Sở GD & ĐT Thanh Hoá KÌ THI KHẢO SÁT CHẤT LƯỢNG LỚP 12
Trường THPT Lê Văn Hưu MÔN TOÁN KHỐI A
Tháng 03/2010
Thời gian:180 phút (Không kể thời gian phát đề)
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7.0 điểm)
Câu I. (2.0 điểm) Cho hàm số y = (C)
1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (C)
2. Viết phương trình tiếp tuyến với đồ thị (C), biết rằng khoảng cách từ tâm đối xứng của đồ
thị (C) đến tiếp tuyến là lớn nhất.
Câu II. (2.0 điểm)
1.Tìm nghiệm của phương trình 2cos4x - ( - 2)cos2x = sin2x + biết x∈ [ 0 ;
π
].
2. Giải hệ phương trình
3 2 3 2
2
3 5.6 4.2 0
( 2 )( 2 )
x y x x y
x y y y x y x
− −
− + =
− = + − +
Câu III. (1.0 điểm) Tính tích phân
3
1
4
2
0
( )
1
x
x
x e dx
x
+
+
∫
Câu IV. (1.0 điểm) Cho x, y, z là các số thực dương lớn hơn 1 và thoả mãn điều kiện xy + yz + zx
≥ 2xyz. Tìm giá trị lớn nhất của biểu thức A = (x - 1)(y - 1)(z - 1).
Câu V. (1.0 điểm) Cho tứ diện ABCD biết AB = CD = a, AD = BC = b, AC = BD = c. Tính thể
tích của tứ diện ABCD.
PHẦN RIÊNG ( 3.0 điểm)
Thí sinh chỉ được làm một trong hai phần A hoặc B (Nếu thí sinh làm cả hai phần sẽ không
được chấm điểm).
A. Theo chương trình nâng cao
Câu VIa. (2.0 điểm)
1. Trong mặt phẳng toạ độ Oxy cho hai đường thẳng (d
1
) : 4x - 3y - 12 = 0 và (d
2
): 4x + 3y -
12 = 0.
Tìm toạ độ tâm và bán kính đường tròn nội tiếp tam giác có 3 cạnh nằm trên (d
1
), (d
2
), trục
Oy.
2. Cho hình lập phương ABCD.A’B’C’D’
có cạnh bằng 2. Gọi M là trung điểm của đoạn AD,
N là tâm hình vuông CC’D’D. Tính bán kính mặt cầu đi qua các điểm B, C’, M, N.
Câu VIIa. (1.0 điểm) Giải bất phương trình
2 3
3 4
2
log ( 1) log ( 1)
0
5 6
x x
x x
+ − +
>
− −
B. Theo chương trình chuẩn
Câu VIb. (2.0 điểm)
1. Cho elip (E) : 4x
2
+ 16y
2
= 64.Gọi F
1
, F
2
là hai tiêu điểm. M là điểm bất kì trên (E).Chứng
tỏ rằng
tỉ số khoảng cách từ M tới tiêu điểm F
2
và tới đường thẳng x =
8
3
có giá trị không đổi.
2. Trong không gian với hệ trục toạ độ Oxyz cho điểm A(1 ;0 ; 1), B(2 ; 1 ; 2) và mặt phẳng
(Q):
x + 2y + 3z + 3 = 0. Lập phương trình mặt phẳng (P) đi qua A, B và vuông góc với (Q).
Câu VIIb. (1.0 điểm)
Giải bất phương trình
2 2 3
2
1 6
10
2
x x x
A A C
x
− ≤ +
(
k
n
C
,
k
n
A
là tổ hợp, chỉnh hợp chập k của n phần
tử)
HẾT
Sở GD & ĐT Thanh Hoá ĐÁP ÁN KÌ THI KHẢO SÁT CHẤT LƯỢNG LỚP 12
ĐỀ CHÍNH THỨC
Trường THPT Lê Văn Hưu MÔN TOÁN
Tháng 03/2010
Thời gian:180 phút (Không kể thời gian phát đề)
PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7.0 điểm)
CÂU NỘI DUNG
THANG
ĐIỂM
Câu I
(2.0đ)
1.
(1.0đ)
TXĐ : D = R\{1}
0.25
Chiều biến thiên
lim ( ) lim ( ) 1
x x
f x f x
→+∞ →−∞
= =
nên y = 1 là tiệm cận ngang của đồ thị hàm số
1 1
lim ( ) , lim
x x
f x
+ −
→ →
= +∞ = −∞
nên x = 1 là tiệm cận đứng của đồ thị hàm số
y’ =
2
1
0
( 1)x
− <
−
0.25
Bảng biến thiên
1
+
∞
-
∞
1
- -
y
y'
x
-
∞
1 +
∞
Hàm số nghịc biến trên
( ;1)−∞
và
(1; )+∞
Hàm số không có cực trị
0.25
Đồ thị.(tự vẽ)
Giao điểm của đồ thị với trục Ox là (0 ;0)
Vẽ đồ thị
Nhận xét : Đồ thị nhận giao điểm của 2 đường tiệm cận I(1 ;1) làm tâm đối xứng
0.25
2.(1.0đ) Giả sử M(x
0
; y
0
) thuộc (C) mà tiếp tuyến với đồ thị tại đó có khoảng cách từ tâm đối
xứng đến tiếp tuyến là lớn nhất.
Phương trình tiếp tuyến tại M có dạng :
0
0
2
0 0
1
( )
( 1) 1
x
y x x
x x
= − − +
− −
2
0
2 2
0 0
1
0
( 1) ( 1)
x
x y
x x
⇔ − − + =
− −
0.25
Ta có d(I ;tt) =
0
4
0
2
1
1
1
( 1)
x
x
−
+
+
Xét hàm số f(t) =
4
2
( 0)
1
t
t
t
>
+
ta có f’(t) =
2
4 4
(1 )(1 )(1 )
(1 ) 1
t t t
t t
− + +
+ +
0.25
ĐỀ CHÍNH THỨC
-
+
f(t)
f'(t)
x
2
0
1
0
+
∞
f’(t) = 0 khi t = 1
Bảng biến thiên
từ bảng biến thiên ta c
d(I ;tt) lớn nhất khi và
chỉ khi t = 1 hay
0
0
0
2
1 1
0
x
x
x
=
− = ⇔
=
0.25
+ Với x
0
= 0 ta có tiếp tuyến là y = -x
+ Với x
0
= 2 ta có tiếp tuyến là y = -x+4
0.25
Câu
II(2.0đ)
1.
(1.0đ)
Phương trình đã cho tương đương với
2(cos4x + cos2x) = (cos2x + 1) + sin2x
0.25
2
cosx=0
4 os3xcosx=2 3 os 2sinxcosx
2cos3x= 3 osx+sinx
c c x
c
⇔ + ⇔
0.25
+
osx=0 x=
2
c k
π
π
⇔ +
+
3x=x- 2
6
2 os3x= 3 osx+sinx cos3x=cos(x- )
6
3 2
6
k
c c
x x k
π
π
π
π
π
+
⇔ ⇔
= − +
0.25
12
24 2
x k
k
x
π
π
π π
= − +
⇔
= +
vì x
[ ]
11 13
0; , , ,
2 12 24 24
x x x x
π π π π
π
∈ ⇒ = = = =
0.25
2.(1.0đ)
ĐK:
, 0x y
x y
≥
≥
Hệ phương trình
3 2 3 2 3 2 3 2
3 5.6 4.2 0 3 5.6 4.2 0
(2 )( 2 ) 2 (2 )( 2 )( )
x y x x y x y x x y
x y y y x y x x y y x y x x y y
− − − −
− + = − + =
⇔ ⇔
− − = − + − = − + − +
0.25
3 2 3 2
3 2 3 2
3 5.6 4.2 0
3 5.6 4.2 0
2 0
(2 )[( 2 )( ) 1] 0
x y x x y
x y x x y
y x
y x y x x y y
− −
− −
− + =
− + =
⇔ ⇔
− =
− + − + + =
(do
2 )( ) 1 0y x x y y+ − + + ≠
)
3 2 3 2 2 2
3 5.6 4.2 0 3 5.6 4.2 0 (1)
2 2 (2)
x y x x y x x x
y x y x
− −
− + = − + =
⇔ ⇔
= =
0.25
Giải (1):
2 2 2
3
( ) 1
3 3
2
3 5.6 4.2 0 ( ) 5.( ) 4 0
3
2 2
( ) 4
2
x
x x x x x
x
=
− + = ⇔ − + = ⇔
=
3
2
0
log 4
x
x
=
⇔
=
0.25
Với x 0 thay vao (2) ta được y = 0
Với
3
2
log 4x =
thay vao (2) ta được y =
3
2
1
log 4
2
Kết hợp với điều kiện ta được nghiệm của phương trình là
3
2
log 4x =
,y =
3
2
1
log 4
2
0.25
Câu III.
(1.0đ)
Đặt I =
3
1
4
2
0
( )
1
x
x
x e dx
x
+
+
∫
. Ta có I =
3
1 1
4
2
0 0
1
x
x
x e dx dx
x
+
+
∫ ∫
0.25
Ta tính
3
1
2
1
0
x
I x e dx=
∫
Đặt t = x
3
ta có
1
1
1
0
0
1 1 1 1
3 3 3 3
t t
I e dt e e= = = −
∫
0.25
Ta tính
1
4
2
0
1
x
I dx
x
=
+
∫
Đặt t =
4
x
4 3
4x t dx t dt⇒ = ⇒ =
0.25
Khi đó
1 1
4
2
2
2 2
0 0
1 2
4 4 ( 1 ) 4( )
1 1 3 4
t
I dx t dt
t t
π
= = − + = − +
+ +
∫ ∫
Vậy I = I
1
+ I
2
1
3
3
e
π
= + −
0.25
Câu IV.
(1.0đ)
Ta có
1 1 1
2 2xy yz xz xyz
x y z
+ + ≥ ⇔ + + ≥
nên
0.25
1 1 1 1 1 ( 1)( 1)
1 1 2 (1)
y z y z
x y z y z yz
− − − −
≥ − + − = + ≥
Tương tự ta có
1 1 1 1 1 ( 1)( 1)
1 1 2 (2)
x z x z
y x z x z xz
− − − −
≥ − + − = + ≥
1 1 1 1 1 ( 1)( 1)
1 1 2 (3)
x y x y
y x y x y xy
− − − −
≥ − + − = + ≥
0.25
Nhân vế với vế của (1), (2), (3) ta được
1
( 1)( 1)( 1)
8
x y z− − − ≤
0.25
vậy A
max
=
1 3
8 2
x y z⇔ = = =
0.25
B'
Y
X
Z
N
D'
C'
A'
C
D
A
B
M
B
D
A
C
P
M
N
Câu V.
(1.0đ)
Qua B, C, D lần lượt dựng các đường thẳng
Song song với CD, BD, BC cắt nhau tại M, N, P
Ta có MN = 2BD, MP = 2CD, NP = 2BC
từ đó ta có các tam giác AMN, APM, ANP
vuông tại A Đặt x = AM, y = AN, AP = z ta có
2 2 2 2 2 2
2 2 2
2( ), 2( )
2( )
x a c b y b c a
z a b c
= + − = + −
= + −
Vậy V =
1
12
2 2 2 2 2 2 2 2 2
2( )( )( )a c b b c a a b c+ − + − + −
1.0
Câu
VIa.
(2.0đ)
1.
(1.0đ)
Gọi A là giao điểm d
1
và d
2
ta có A(3 ;0)
Gọi B là giao điểm d
1
với trục Oy ta có B(0 ; - 4)
Gọi C là giao điểm d
2
với Oy ta có C(0 ;4)
0.5
Gọi BI là đường phân giác trong góc B với I thuộc OA khi đó ta có
I(4/3 ; 0), R = 4/3
0.5
2.
(1.0đ) Chọn hệ trục toạ độ như hình vẽ
Ta có M(1 ;0 ;0), N(0 ;1 ;1)
B(2 ;0 ;2), C’(0 ;2 ;2)
Gọi phương tình mặt cầu đi qua 4 điểm
M,N,B,C’ có dạng
x
2
+ y
2
+ z
2
+2Ax + 2By+2Cz +D = 0
Vì mặt cầu đi qua 4 điểm nên ta có
5
2
1 2 0
5
2 2 2 0
2
8 4 4 0
1
8 4 4 0
2
4
A
A D
B C D
B
A C D
C
B C D
D
= −
+ + =
+ + + =
= −
⇔
+ + + =
= −
+ + + =
=
Vậy bán kính R =
2 2 2
15A B C D+ + − =
1.0
Câu
VIIa
(1.0đ)
Câu
VIb
(2.0đ)
1.
(1.0đ)
Đk: x > - 1 0.25
bất phương trình
3
3
3
3log ( 1)
2log ( 1)
log 4
0
( 1)( 6)
x
x
x x
+
+ −
⇔ >
+ −
3
log ( 1)
0
6
x
x
+
⇔ <
−
0.25
0.25
0 6x⇔ < <
0.25
Ta có
1 2
( 12;0), ( 12;0)F F−
Giả sử M(x
0
; y
0
)thuộc (E) H là hình chiếu của M trên
đường thẳng
8
3
x =
. Ta có MF
2
= a - cx
0
/a =
0
8 3
2
x−
0.5
MH =
0
8 3
3
x−
. Vậy
2
MF
MH
không đổi
0.5
2.
(1.0)
Ta cú
(1;1;1), (1;2;3), ; (1; 2;1)
Q Q
AB n AB n
=
uuur uur uuur uur
Vỡ
; 0
Q
AB n
uuur uur r
nờn mt phng (P) nhn
;
Q
AB n
uuur uur
lm vộc t phỏp tuyn
Vy (P) cú phng trỡnh x - 2y + z - 2 = 0
1.0
Cõu
VIIb
(1.0)
nghim bt phng trỡnh l x = 3 v x = 4 1.0
Chú ý: Nếu thí sinh làm bài không theo cách nêu trong đáp án mà vẫn đúng thì đợc đủ điểm từng phần nh đáp án
quy định
S GIO DC V O TO BC NINH
TRNG THPT THUN THNH S I
Ngy thi 21/03/2010
THI KHO ST CHT LNG LN 2
MễN: TON
Thi gian lm bi: 180 phỳt (khụng k thi gian
giao )
I. PHN CHUNG CHO TT C TH SINH (7,0 im)
Cõu I (2,0 im) Cho hm s
2
m
y x m
x
= + +
1. Kho sỏt s bin thiờn v v th hm s ó cho vi m = 1.
2. Tỡm m hm s cú cc i v cc tiu sao cho hai im cc tr ca th hm s cỏch
ng thng
d: x y + 2 = 0 nhng khong bng nhau.
Cõu II (2,0 im)
1. Gii phng trỡnh
( )
( )
2
cos . cos 1
2 1 sin .
sin cos
x x
x
x x
= +
+
2. Gii phng trỡnh
2 2
7 5 3 2 ( )x x x x x x + + = Ă
Cõu III (1,0 im). Tớnh tớch phõn
3
0
3
3. 1 3
x
dx
x x
+ + +
.
Cõu IV (1,0 im). Cho t din u ABCD cú cnh bng 1. Gi M, N l cỏc im ln lt di
ng trờn cỏc cnh AB, AC sao cho
( ) ( )
DMN ABC
. t AM = x, AN = y. Tớnh th tớch t
din DAMN theo x v y. Chng minh rng:
3 .x y xy+ =
Cõu V (1,0 im). Cho x, y, z
0
tho món x+y+z > 0. Tỡm giỏ tr nh nht ca biu thc
( )
3 3 3
3
16x y z
P
x y z
+ +
=
+ +
II. PHN RIấNG (3,0 im): Thớ sinh ch c lm mt trong hai phn (phn A hoc B).
A. Theo chng trỡnh Chun:
Cõu VI.a (2,0 im)
1. Trong mt phng to Oxy, cho hỡnh ch nht ABCD cú phng trỡnh ng thng AB:
x 2y + 1 = 0, phng trỡnh ng thng BD: x 7y + 14 = 0, ng thng AC i qua M(2;
1). Tỡm to cỏc nh ca hỡnh ch nht.
2. Trong không gian toạ độ Oxyz, cho mặt phẳng (P): 2x – y – 5z + 1 = 0 và hai đường
thẳng
d
1
:
1 1 2
2 3 1
x y z+ − −
= =
, d
2
:
2 2
1 5 2
x y z− +
= =
−
Viết phương trình đường thẳng d vuông góc với (P) đồng thời cắt hai đường thẳng d
1
và d
2
.
Câu VII.a (1,0 điểm). Tìm phần thực của số phức z = (1 + i)
n
, biết rằng n ∈ N thỏa mãn phương trình
log
4
(n – 3) + log
4
(n + 9) = 3
B. Theo chương trình Nâng cao:
Câu VI.b (2,0 điểm)
1. Trong mặt phẳng toạ độ Oxy cho tam giác ABC, có điểm A(2; 3), trọng tâm G(2; 0). Hai
đỉnh B và C lần lượt nằm trên hai đường thẳng d
1
: x + y + 5 = 0 và d
2
: x + 2y – 7 = 0. Viết
phương trình đường tròn có tâm C và tiếp xúc với đường thẳng BG.
2. Trong không gian toạ độ cho đường thẳng d:
3 2 1
2 1 1
x y z− + +
= =
−
và mặt phẳng (P): x + y + z
+ 2 = 0. Gọi M là giao điểm của d và (P). Viết phương trình đường thẳng
∆
nằm trong mặt
phẳng (P), vuông góc với d đồng thời thoả mãn khoảng cách từ M tới
∆
bằng
42
.
Câu VII.b (1,0 điểm). Giải hệ phương trình
( )
1 4
4
2 2
1
log log 1
( , )
25
y x
y
x y
x y
− − =
∈
+ =
¡
Hết
SƠ LƯỢC ĐÁP ÁN VÀ BIỂU ĐIỂM ĐỀ THI KHẢO SÁT LẦN 2 - 2010
Đáp án gồm 06 trang
Câu Nội dung Điểm
I 2,0
1 1,0
Với m =1 thì
1
1
2
y x
x
= + +
−
a) Tập xác định: D
{ }
\ 2= ¡
0.25
b) Sự biến thiên:
( ) ( )
2
2 2
1 4 3
' 1
2 2
x x
y
x x
− +
= − =
− −
,
1
' 0
3
x
y
x
=
= ⇔
=
.
lim
x
y
→−∞
= −∞
,
lim
x
y
→+∞
= +∞
,
2 2
lim ; lim
x x
y y
+ −
→ →
= +∞ = −∞
,
[ ] [ ]
lim ( 1) 0 ; lim ( 1) 0
x x
y x y x
→+∞ →−∞
− + = − + =
Suy ra đồ thị hàm số có tiệm cận đứng x = 2, tiệm cận xiên y = x – 1.
0.25
Bảng biến thiên
0.25
x
y’
y
-
∞
1 2 3
+
∞
0
0
+
∞
+
∞
-
∞
-
∞
1
3
–
–
+
+
Hàm số đồng biến trên mỗi khoảng
( ) ( )
;1 , 3; ;−∞ +∞
hàm số nghịch biến
trên mỗi khoảng
( ) ( )
1;2 , 2;3
Cực trị: Hàm số đạt giá trị cực trị: y
CĐ
= 1 tại x = 1; y
CT
= 3 tại x = 3.
c) Đồ thị:
0.25
2 1.0
Với x
≠
2 ta có y
’
= 1-
2
( 2)
m
x −
;
Hàm số có cực đại và cực tiểu
⇔
phương trình (x – 2)
2
– m = 0 (1) có hai
nghiệm phân biệt khác 2
0m
⇔ >
0.25
Với m > 0 phương trình (1) có hai nghiệm là:
1 1
2 2
2 2 2
2 2 2
x m y m m
x m y m m
= + ⇒ = + +
= − ⇒ = + −
0.25
Hai điểm cực trị của đồ thị hàm số là A(
2 ;2 2 )m m m− + −
; B(
2 ;2 2 )m m m+ + +
Khoảng cách từ A và B tới d bằng nhau nên ta có phương trình:
2 2m m m m− − = − +
0.25
0
2
m
m
=
⇔
=
Đối chiếu điều kiện thì m = 2 thoả mãn bài toán
Vậy ycbt ⇔ m = 2.
0.25
II 2.0
1
Giải phương trình
( )
( )
2
cos . cos 1
2 1 sin .
sin cos
x x
x
x x
−
= +
+
1.0
ĐK:
sin cos 0x x
+ ≠
0.25
Khi đó
( )
( ) ( ) ( )
2
1 sin cos 1 2 1 sin sin cosPT x x x x x⇔ − − = + +
( ) ( )
1 sin 1 cos sin sin .cos 0x x x x x⇔ + + + + =
( ) ( ) ( )
1 sin 1 cos 1 sin 0x x x⇔ + + + =
0.25
sin 1
cos 1
x
x
= −
⇔
= −
(thoả mãn điều kiện)
0.25
2
2
2
x k
x m
π
π
π π
= − +
⇔
= +
( )
,k m∈Z
Vậy phương trình đã cho có nghiệm là:
2
2
x k
π
π
= − +
và
2x m
π π
= +
( )
,k m∈Z
0.25
2
Giải phương trình:
2 2
7 5 3 2 ( )x x x x x x− + + = − − ∈¡
1.0
2
2 2
3 2 0
7 5 3 2
x x
PT
x x x x x
− − ≥
⇔
− + + = − −
0.25
2
3 2 0
5 2( 2)
x x
x x x
− − ≥
⇔
+ = − +
0.25
3 1
0
2
5 2.
x
x
x
x
x
− ≤ ≤
⇔ ≠
+
+ = −
( )
( )
2
2 0
1 16 0
x
x x
− ≤ <
⇔
+ − =
0.25
1x
⇔ = −
Vậy phương trình đã cho có một nghiệm x = - 1.
0.25
III
Tính tích phân
3
0
3
3. 1 3
x
dx
x x
−
+ + +
∫
.
1.0
Đặt u =
2
1 1 2x u x udu dx+ ⇒ − = ⇒ =
; đổi cận:
0 1
3 2
x u
x u
= ⇒ =
= ⇒ =
0.25
Ta có:
3 2 2 2
3
2
0 1 1 1
3 2 8 1
(2 6) 6
3 2 1
3 1 3
x u u
dx du u du du
u u u
x x
− −
= = − +
+ + +
+ + +
∫ ∫ ∫ ∫
0.25
( )
2
2
1
2
6 6ln 1
1
u u u= − + +
0.25
3
3 6ln
2
= − +
0.25
IV 1.0
Dựng
DH MN H⊥ =
Do
( ) ( ) ( )
DMN ABC DH ABC⊥ ⇒ ⊥
mà
.D ABC
là
tứ diện đều nên
H
là tâm tam giác đều
ABC
.
0.25
D
A
BC
H
M
N
Trong tam giác vuông DHA:
2
2 2 2
3 6
1
3 3
DH DA AH
= − = − =
÷
÷
Diện tích tam giác
AMN
là
0
1 3
. .sin 60
2 4
AMN
S AM AN xy= =
0.25
Thể tích tứ diện
.D AMN
là
1 2
.
3 12
AMN
V S DH xy= =
0.25
Ta có:
AMN AMH AMH
S S S= +
0 0 0
1 1 1
.sin 60 . .sin 30 . .sin 30
2 2 2
xy x AH y AH⇔ = +
⇔
3 .x y xy+ =
0.25
V 1.0
Trước hết ta có:
( )
3
3 3
4
x y
x y
+
+ ≥
(biến đổi tương đương)
( ) ( )
2
0x y x y⇔ ⇔ − + ≥
0.25
Đặt x + y + z = a. Khi đó
( ) ( )
( )
3 3
3 3
3
3
3 3
64 64
4 1 64
x y z a z z
P t t
a a
+ + − +
≥ = = − +
(với t =
z
a
,
0 1t
≤ ≤
)
0.25
Xét hàm số f(t) = (1 – t)
3
+ 64t
3
với t
[ ]
0;1∈
. Có
( )
[ ]
2
2
1
'( ) 3 64 1 , '( ) 0 0;1
9
f t t t f t t
= − − = ⇔ = ∈
Lập bảng biến thiên
0.25
( )
[ ]
0;1
64
inf
81
t
M t
∈
⇒ = ⇒
GTNN của P là
16
81
đạt được khi x = y = 4z > 0
0.25
VI.a 2.0
1 1.0
Do B là giao của AB và BD nên toạ độ của B là nghiệm của hệ:
21
2 1 0
21 13
5
;
7 14 0 13
5 5
5
x
x y
B
x y
y
=
− + =
⇔ ⇒
÷
− + =
=
0.25
Lại có: Tứ giác ABCD là hình chữ nhật nên góc giữa AC và AB bằng góc
giữa AB và BD, kí hiệu
(1; 2); (1; 7); ( ; )
AB BD AC
n n n a b− −
uuur uuur uuur
(với a
2
+ b
2
> 0) lần lượt
là VTPT của các đường thẳng AB, BD, AC. Khi đó ta có:
( ) ( )
os , os ,
AB BD AC AB
c n n c n n=
uuur uuur uuur uuur
2 2 2 2
3
2 7 8 0
2
7
a b
a b a b a ab b
b
a
= −
⇔ − = + ⇔ + + = ⇔
= −
0.25
- Với a = - b. Chọn a = 1
⇒
b = - 1. Khi đó Phương trình AC: x – y – 1 = 0,
0.25
A = AB ∩ AC nên toạ độ điểm A là nghiệm của hệ:
1 0 3
(3;2)
2 1 0 2
x y x
A
x y y
− − = =
⇒ ⇒
− + = =
Gọi I là tâm hình chữ nhật thì I = AC ∩ BD nên toạ độ I là nghiệm của hệ:
7
1 0
7 5
2
;
7 14 0 5
2 2
2
x
x y
I
x y
y
=
− − =
⇔ ⇒
÷
− + =
=
Do I là trung điểm của AC và BD nên toạ độ
( )
14 12
4;3 ; ;
5 5
C D
÷
- Với b = - 7a (loại vì AC không cắt BD)
0.25
2 1.0
Phương trình tham số của d
1
và d
2
là:
1 2
1 2 2
: 1 3 ; : 2 5
2 2
x t x m
d y t d y m
z t z m
= − + = +
= + = − +
= + = −
0.25
Giả sử d cắt d
1
tại M(-1 + 2t ; 1 + 3t ; 2 + t) và cắt d
2
tại N(2 + m ; - 2 + 5m ;
- 2m)
MN⇒
uuuur
(3 + m - 2t ; - 3 + 5m - 3t ; - 2 - 2m - t).
0.25
Do d ⊥ (P) có VTPT
(2; 1; 5)
P
n − −
uur
nên
:
p
k MN kn∃ = ⇔
uuuur uur
3 2 2
3 5 3
2 2 5
m t k
m t k
m t k
+ − =
− + − = −
− − − = −
có
nghiệm
0.25
Giải hệ tìm được
1
1
m
t
=
=
Khi đó điểm M(1; 4; 3)
⇒
Phương trình d:
1 2
4
3 5
x t
y t
z t
= +
= −
= −
thoả mãn bài toán
0.25
VII.a
Tìm phần thực của số phức z = (1 + i)
n
, biết rằng n ∈ N thỏa mãn phương trình
log
4
(n – 3) + log
4
(n + 9) = 3
1.0
Điều kiện:
3
n N
n
∈
>
Phương trình log
4
(n – 3) + log
4
(n + 9) = 3 ⇔ log
4
(n – 3)(n + 9) = 3
0.25
⇔ (n – 3)(n + 9) = 4
3
⇔ n
2
+ 6n – 91 = 0
7
13
n
n
=
⇔
= −
Vậy n = 7.
0.25
Khi đó z = (1 + i)
n
= (1 + i)
7
=
( ) ( ) ( )
3
2
3
1 . 1 1 .(2 ) (1 ).( 8 ) 8 8i i i i i i i
+ + = + = + − = −
0.25
(thoả mãn)
(không thoả mãn)
Vậy phần thực của số phức z là 8. 0.25
VI.b 2.0
1 1.0
Giả sử
1 2
( ; ) 5; ( ; ) 2 7
B B B B C C C C
B x y d x y C x y d x y∈ ⇒ = − − ∈ ⇒ = − +
Vì G là trọng tâm nên ta có hệ:
2 6
3 0
B C
B C
x x
y y
+ + =
+ + =
0.25
Từ các phương trình trên ta có: B(-1;-4) ; C(5;1)
0.25
Ta có
(3;4) (4; 3)
BG
BG VTPT n⇒ −
uuur uuur
nên phương trình BG: 4x – 3y – 8 = 0
0.25
Bán kính R = d(C; BG) =
9
5
⇒
phương trình đường tròn: (x – 5)
2
+(y – 1)
2
=
81
25
0.25
2 1.0
Ta có phương trình tham số của d là:
3 2
2
1
x t
y t
z t
= +
= − +
= − −
⇒ toạ độ điểm M là nghiệm của hệ
3 2
2
1
2 0
x t
y t
z t
x y z
= +
= − +
= − −
+ + + =
(tham số t)
(1; 3;0)M⇒ −
0.25
Lại có VTPT của(P) là
(1;1;1)
P
n
uur
, VTCP của d là
(2;1; 1)
d
u −
uur
.
Vì
∆
nằm trong (P) và vuông góc với d nên VTCP
, (2; 3;1)
d P
u u n
∆
= = −
uur uur uur
Gọi N(x; y; z) là hình chiếu vuông góc của M trên
∆
, khi đó
( 1; 3; )MN x y z− +
uuuur
.
Ta có
MN
uuuur
vuông góc với
u
∆
uur
nên ta có phương trình: 2x – 3y + z – 11 = 0
Lại có N
∈
(P) và MN =
42
ta có hệ:
2 2 2
2 0
2 3 11 0
( 1) ( 3) 42
x y z
x y z
x y z
+ + + =
− + − =
− + + + =
0.25
Giải hệ ta tìm được hai điểm N(5; - 2; - 5) và N(- 3; - 4; 5)
0.25
Nếu N(5; -2; -5) ta có pt
5 2 5
:
2 3 1
x y z− + +
∆ = =
−
Nếu N(-3; -4; 5) ta có pt
3 4 5
:
2 3 1
x y z+ + −
∆ = =
−
0.25
VII.b
Giải hệ phương trình
( )
1 4
4
2 2
1
log log 1
( , )
25
y x
y
x y
x y
− − =
∈
+ =
¡
1.0
Điều kiện:
0
0
y x
y
− >
>
0.25
Hệ phương trình
( )
4 4 4
2 2 2 2 2 2
1 1
log log 1 log 1
4
25 25 25
y x y x
y x
y y y
x y x y x y
− −
− + = − = − =
⇔ ⇔ ⇔
+ = + = + =
0.25
2
2 2 2 2
3
3 3
25
25 9 25
10
x y
x y x y
y
x y y y
=
= =
⇔ ⇔ ⇔
=
+ = + =
0.25
( )
( )
15 5
; ;
10 10
15 5
; ;
10 10
x y
x y
=
÷
⇔
= − −
÷
Vậy hệ phương trình đã cho vô nghiệm.
0.25
Nếu thí sinh làm bài không theo cách nêu trong đáp án mà vẫn đúng thì được điểm từng phần như
đáp án quy định.
(không thỏa mãn
đk)
(không thỏa mãn
đk)
SỞ GD&ĐT NGHỆ AN ĐỀ THI KHẢO SÁT CHẤT LƯỢNG LẦN I NĂM 2010
TRƯỜNG THPT THANH CHƯƠNG I Môn Toán
(Thời gian làm bài: 180 phút)
I. PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7,0 điểm )
Câu I (2,0 điểm).
Cho hàm số y = -x
3
+3x
2
+1
1. Khảo sát và vẽ đồ thị của hàm số
2. Tìm m để phương trình x
3
-3x
2
= m
3
-3m
2
có ba nghiệm phân biệt.
Câu II (2,0 điểm ).
1. Giải bất phương trình:
2
4 4
16 6
2
x x
x x
+ + −
≤ + − −
2.Giải phương trình:
2
1
3 sin sin 2 tan
2
x x x+ =
Câu III (1,0 điểm). Tính tích phân:
ln3
2
ln2
1 2
x
x x
e dx
I
e e
=
− + −
∫
Câu IV (1,0 điểm). Cho hình chóp S.ABC có SA=SB=SC=
2a
. Đáy là tam giác ABC cân
·
0
120BAC =
, cạnh BC=2a Tính thể tích của khối chóp S.ABC.Gọi M là trung điểm của SA.Tính
khoảng cách từ M đến mặt phẳng (SBC).
Câu V (1,0 điểm). Cho a,b,c là ba số thực dương. Chứng minh:
( )
3 3 3
3 3 3
1 1 1 3
2
b c c a a b
a b c
a b c a b c
+ + +
+ + + + ≥ + +
÷ ÷
II. PHẦN RIÊNG ( 3,0 điểm )
Thí sinh chỉ được làm một trong hai phần (phần A hoặc phần B).
A. Theo chương trình Chuẩn :
Câu VI.a(2,0 điểm).
1. Trong mặt phẳng tọa độ Oxy. Cho đường tròn (C) :
2 2
4 2 1 0x y x y+ − − + =
và điểm A(4;5).
Chứng minh A nằm ngoài đường tròn (C) . Các tiếp tuyến qua A tiếp xúc với (C) tại T
1
, T
2
,
viết phương trình đường thẳng T
1
T
2
.
2. Trong không gian Oxyz. Cho mặt phẳng (P): x+y-2z+4=0 và mặt cầu (S):
2 2 2
2 4 2 3 0x y z x y z+ + − + + − =
Viết phương trình tham số đường thẳng (d) tiếp xúc với (S)
tại A(3;-1;1) và song song với mặt phẳng (P).
Câu VII.a(1,0 điểm) Trong mặt phẳng tọa độ. Tìm tập hợp điểm biểu diễn các số phức z thỏa mãn
các điều kiện:
2 3z i z i− = − −
. Trong các số phức thỏa mãn điều kiện trên, tìm số phức có mô
đun nhỏ nhất.
B. Theo chương trình Nâng cao :
Câu VI.b(2,0 điểm)
1. Trong mặt phẳng toạ độ Oxy. Cho tam giác ABC cân tại A có chu vi bằng 16, A,B thuộc
đường thẳng d:
2 2 2 2 0x y− − =
và B, C thuộc trục Ox . Xác định toạ độ trọng tâm của tam
giác ABC.
2. Trong không gian với hệ trục toạ độ Oxyz. Cho tam giác ABC có: A(1;-2;3), B(2;1;0),
C(0;-1;-2). Viết phương trình tham số đường cao tương ứng với đỉnh A của tam giác ABC.
Câu VII.b(1,0 điểm).
Cho hàm số (C
m
):
2
1
x x m
y
x
− +
=
−
(m là tham số). Tìm m để (C
m
) cắt Ox tại hai điểm phân biệt
A,B sao cho tiếp tuyến của (C
m
) tại A, B vuông góc.
SỞ GD & ĐT NGHỆ AN
TRƯỜNG THPT THANH CHƯƠNG 1
KÌ THI KHẢO SÁT CHẤT LƯỢNG LẦN 1
ĐÁP ÁN VÀ THANG ĐIỂM MÔN TOÁN
Câu Nội Dung Điểm
I.1
(1 điểm)
* TXĐ: R
Sự biến thiên: y' = -3x
2
+ 6x = -3x(x - 2)
y' = 0
⇔
0
2
x
x
=
=
* Hàm số nghịch biến trên (-∞;0) và (2;+∞)
Hàm số đồng biến trên (0;2)
Hàm số đạt cực đại tại x = 2, y
CĐ
= 5
Hàm số đạt cực tiểu tại x = 0, y
CT
= 1
*
lim
x→−∞
y = + ∞,
lim
x→+∞
y = - ∞
Bảng biến thiên: x -∞ 0 2 +∞
y' - 0 + 0 -
+ ∞ 5
y
1 -∞
*Đồ thị: y'' = -6x + 6
y'' = 0
⇔
x = 1
⇒
điểm uốn I(1;3) là tâm đối xứng của đồ thị
0,25
0,25
0,25
0,25
I.2
(1 điểm)
* PT đã cho
⇔
-x
3
+ 3x
2
+ 1 = -m
3
+ 3m
2
+ 1. Đặt k = -m
3
+ 3m
2
+ 1
* Số nghiệm của PT bằng số giao điểm của đồ thị (C) với đt y = k.
* Từ đồ thị (C ) ta có: PT có 3 nghiệm phân biệt
⇔
1 < k < 5
*
⇔
m
∈
(-1;3)\
{ }
0;2
.
0,25
0,25
0,25
0,25
II.1
(1 điểm)
* Đk:
4 0
4 0
x
x
+ ≥
− ≥
⇔
x
≥
4. Đặt t =
4 4x x+ + −
(t > 0)
BPT trở thành: t
2
- t - 6
≥
0
⇔
2( )
3
t L
t
≤ −
≥
0,25
* Với t
≥
3
⇔
2
2
16x −
≥
9 - 2x
2 2
( )
0 ( )
4( 16) (9 2 )
a
b
x x
≥
≤
≥
>
− ≥ −
x 4
9 - 2x 0
x 4
9 - 2x
* (a)
⇔
x
≥
9
2
.
* (b)
⇔
145 9
36 2
≤ x <
.
*Tập nghệm của BPT là: T=
145
;
36
+∞
÷
0,25
0,25
0,25
II.2
(1 điểm)
* Đk: cosx
≠
0
⇔
x
≠
2
k
π
π
+
.
PT đã cho
⇔
3
sin
2
x + sinxcosx -
sinx
cos x
= 0
*
⇔
sinx(
3
sinx + cosx -
1
cos x
) = 0
⇔
sinx 0
1
3 sinx cos 0
osx
x
c
=
+ − =
* Sinx = 0
⇔
x = k
π
.
*
3
sinx + cosx -
1
cos x
= 0
⇔
3
tanx + 1 -
2
1
cos x
= 0
⇔
tan
2
x -
3
tanx = 0
⇔
t anx 0
t anx 3
=
=
⇔
x
x
3
k
k
π
π
π
=
= +
Vậy PT có các họ nghiệm: x = k
π
, x =
3
k
π
π
+
0,25
0,25
0,25
0,25
III.
(1 điểm)
* Đặt t =
2
x
e −
, Khi x = ln2
⇒
t = 0
x = ln3
⇒
t = 1
e
x
= t
2
+ 2
⇒
e
2x
dx = 2tdt
* I = 2
1
2
2
0
( 2)
1
t tdt
t t
+
+ +
∫
= 2
1
2
0
2 1
( 1 )
1
t
t dt
t t
+
− +
+ +
∫
* = 2
1
0
( 1)t dt−
∫
+ 2
1
2
2
0
( 1)
1
d t t
t t
+ +
+ +
∫
* =
2
1
( 2 )
0
t t−
+ 2ln(t
2
+ t + 1)
1
0
= 2ln3 - 1
0,25
0,25
0,25
0,25
IV.
(1 điểm)
* Áp dụng định lí cosin trong
∆
ABC có AB = AC =
2
3
a
⇒
S
ABC∆
=
1
2
AB.AC.sin120
0
=
2
3
3
a
. Gọi H là hình chiếu của S
lên (ABC), theo gt: SA = SB = SC
⇒
HA = HB = HC
0,25
⇒
H là tâm đường tròn ngoại tiếp
∆
ABC.
* Theo định lí sin trong
∆
ABC ta có:
sin
BC
A
= 2R
⇒
R =
2
3
a
= HA
∆
SHA vuông tại H
⇒
SH =
2 2
SA HA−
=
6
3
a
⇒
.S ABC
V
=
1
3
S
ABC∆
.SH =
2
2
9
a
* Gọi h
A
, h
M
lần lượt là khoảng cách từ A, M tới mp(SBC)
⇒
1
2
M
A
h SM
h SA
= =
⇒
h
M
=
1
2
h
A
.
∆
SBC vuông tại S
⇒
S
SBC∆
= a
2
* Lại có:
.S ABC
V
=
1
3
S
SBC∆
.h
A
⇒
h
A
=
.
3
S ABC
SBC
V
V
∆
=
2
3
a
Vậy h
M
= d(M;(SBC)) =
2
6
a
0,25
0,25
0,25
V
(1 điểm)
* Ta cm với a, b > 0 có a
3
+ b
3
≥
a
2
b + ab
2
(*)
Thật vậy: (*)
⇔
(a + b)(a
2
-ab + b
2
) - ab(a + b)
≥
0
⇔
(a + b)(a - b)
2
≥
0 đúng
Đẳng thức xẩy ra khi a = b.
* Từ (*)
⇒
a
3
+ b
3
≥
ab(a + b)
b
3
+ c
3
≥
bc(b + c)
c
3
+ a
3
≥
ca(c + a)
⇒
2(a
3
+ b
3
+ c
3
)
≥
ab(a + b) + bc(b + c) + ca(c + a) (1)
* Áp dụng BĐT co si cho 3 số dương ta có:
3
1
a
+
3
1
a
+
3
1
a
≥
3
3
3 3 3
1 1 1
a b c
=
3
abc
(2)
* Nhân vế với vế của (1) và (2) ta được BĐT cần cm
Đẳng thức xẩy ra khi a = b = c.
0,25
0,25
0,25
0,25
VI.a.1
(1 điểm)
* Đường tròn (C) có tâm I(2;1), bán kính R = 2.
Ta có IA = 2
5
> R
⇒
A nằm ngoài đường tròn (C)
* Xét đường thẳng
1
∆
: x = 4 đi qua A có d(I;
1
∆
) = 2
⇒
1
∆
là 1 tiếp
tuyến của (C)
*
1
∆
tiếp xúc với (C ) tại T
1
(4;1)
* T
1
T
2
⊥
IA
⇒
đường thẳng T
1
T
2
có vtpt
n
r
=
1
2
IA
uur
=(1;2)
phương trình đường thẳng T
1
T
2
: 1(x - 4) + 2(y - 1)
⇔
x + 2y - 6 = 0
0,25
0,25
0,25
0,25
VI.a.2
(1 điểm)
* Mp(P) có vtpt
P
n
ur
= (1;1;-2).
(S) có tâm I(1;-2;-1)
*
IA
uur
= (2;1;2). Gọi vtcp của đường thẳng
∆
là
u
∆
ur
∆
tiếp xúc với (S) tại A
⇒
u
∆
ur
⊥
IA
uur
0,25
0,25
Vì
∆
// (P)
⇒
u
∆
ur
⊥
P
n
ur
* Chọn
0
u
ur
= [
IA
uur
,
P
n
ur
] = (-4;6;1)
* Phương trình tham số của đường thẳng
∆
:
3 4
1 6
1
x t
y t
z t
= −
= − +
= +
0,25
0,25
VII.a
(1 điểm)
* Đặt z = x + yi (x; y
∈
R)
|z - i| = |
Z
- 2 - 3i|
⇔
|x + (y - 1)i| = |(x - 2) - (y + 3)i|
*
⇔
x - 2y - 3 = 0
⇔
Tập hợp điểm M(x;y) biểu diễn só phức z là
đường thẳng x - 2y - 3 = 0
* |z| nhỏ nhất
⇔
|
OM
uuuur
| nhỏ nhất
⇔
M là hình chiếu của O trên
∆
*
⇔
M(
3
5
;-
6
5
)
⇒
z =
3
5
-
6
5
i
Chú ý:
HS có thể dùng phương pháp hình học để tìm quỹ tích điểm M
0,25
0,25
0,25
0,25
VI.b.1
(1 điểm)
* B = d
∩
Ox = (1;0)
Gọi A = (t;2
2
t - 2
2
)
∈
d
H là hình chiếu của A trên Ox
⇒
H(t;0)
H là trung điểm của BC.
* Ta có: BH = |t - 1|; AB =
2 2
( 1) (2 2 2 2)t t− + − =
3|t - 1|
∆
ABC cân tại A
⇒
chu vi: 2p = 2AB + 2BH = 8|t - 1|
*
⇒
16 = 8|t - 1|
⇔
t 3
t 1
=
= −
* Với t = 3
⇔
A(3;4
2
), B(1;0), C(5;0)
⇒
G(
3
;
4 2
3
)
Với t = -1
⇔
A(-1;-4
2
), B(1;0), C(-3;0)
⇒
G(
1−
;
4 2
3
−
)
0,25
0,25
0,25
0,25
VI.b.2
(1 điểm)
* Gọi d là đường cao tương ứng với đỉnh A của
∆
ABC
⇒
d là giao tuyến của (ABC) với (
α
) qua A và vuông góc với
BC.
* Ta có:
AB
uuur
= (1;3;-3),
AC
uuur
= (-1;1;-5) ,
BC
uuur
= (-2;-2;-2)
[
AB
uuur
,
AC
uuur
] = (18;8;2)
mp(ABC) có vtpt
n
ur
=
1
4
[
AB
uuur
,
AC
uuur
] = (-3;2;1).
mp(
α
) có vtpt
n
ur
' = -
1
2
BC
uuur
= (1;1;1)
* Đường thẳng d có vtcp
u
ur
=[
n
ur
,
n
ur
' ] = (1;4;-5).
0,25
0,25
0,25
* Phương trình đường thẳng d:
1
2 4
3 5
x t
y t
z t
= +
= − +
= −
0,25
VII.b
(1 điểm)
* Phương trình hoành độ giao điểm của (C
m
) với Ox:
2
1
x m
x
− +
−
x
= 0
⇔
2
0x m
− + =
≠
x
x 1
(C
m
) cắt Ox tại 2 điểm phân biệt
⇔
pt f(x) = x
2
- x + m = 0 có 2
nghiệm phân biệt khác 1
⇔
0
(1) 0f
∆ >
≠
⇔
1
4
0
m
m
<
≠
(*)
* Khi đó gọi x
1
, x
2
là nghiệm của f(x) = 0
⇒
1 2
1 2
1
m
+ =
=
x x
x x
.
Ta có: y' =
2
'( )( 1) ( 1)'. ( )
( 1)
f x x x f x
x
− − −
−
⇒
Hệ số góc tiếp tuyến của (C
m
) tại A và B lần lượt là:
k
1
= y'(x
1
) =
1 1 1
2
1
'( )( 1) ( )
( 1)
f x x f x
x
− −
−
=
1
1
'( )
( 1)
f x
x −
=
1
1
2
1
x
x −
* Tương tự: k
1
= y'(x
2
) =
2
2
2
1
x
x −
( do f(x
1
) = f(x
2
) = 0)
Theo gt: k
1
k
2
= -1
⇔
1
1
2
1
x
x −
.
2
2
2
1
x
x −
= -1
*
⇔
m =
1
5
( thoả mãn (*))
0,25
0,25
0,25
0,25