Tải bản đầy đủ (.doc) (2 trang)

Đề thi tuyển vao 10 moi nhất và đáp án

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (119 KB, 2 trang )

SỞ GIÁO DỤC &ĐÀO TẠO
TỈNH BÌNH ĐỊNH
ĐỀ CHÍNH THỨC
ĐỀ THI TUYỂN SINH TRUNG HỌC PHỔ THÔNG
NĂM HỌC 2009-2010
Môn thi: TOÁN ( Hệ số 1 – môn Toán chung)
Thời gian: 120 phút (không kể thời gian phát đề)
*****
Bài 1: (1,5 điểm)
Cho
2 1 1
1
1 1
x x x
P
x
x x x x
+ + +
= + −

− + +
a. Rút gọn P
b. Chứng minh P <1/3 với và x#1
Bài 2: (2,0 điểm)
Cho phương trình:
(1)
a. Chứng minh rằng phương trình (1) luôn luôn có 2 nghiệm phân biệt.
b. Gọi là 2 nghiệm của phương trình (1). Tìm giá trị nhỏ nhất của biểu thức
c. Tìm hệ thức giữa và không phụ thuộc vào m.
Câu 3: (2,5 điểm)
Hai vòi nước cùng chảy vào 1 cái bể không có nước trong 6 giờ thì đầy bể. Nếu để


riêng vòi thứ nhất chảy trong 2 giờ, sau đó đóng lại và mở vòi thứ hai chảy tiếp
trong 3 giờ nữa thì được 2/5 bể. Hỏi nếu chảy riêng thì mỗi vòi chảy đầy bể trong
bao lâu?
Bài 4: (3 điểm)
Cho tam giác ABC nội tiếp trong đường tròn (O), I là trung điểm của BC, M là 1
điểm trên đoạn CI (M khác C và I). Đường thẳng AM cắt (O) tại D, tiếp tuyến của
đường tròn ngoại tiếp tam giác AIM tại M cắt BD tại P và cắt DC tại Q.
a. Chứng minh DM . AI = MP . IB
b. Tính tỉ số
Câu 5: (1,0 điểm)
Cho 3 số dương a, b, c thoả mãn điều kiện a+b+c=3. Chứng minh rằng:
HƯỚNG DẪN BÀI 4 ,5
a. Chứng minh DM . AI = MP . IB
Chứng minh hai tam giác MDP và ICA đồng dạng :


·
·
·
= =PMQ AMQ AIC
( Đối đỉnh + cùng chắn cung)

·
·
=MDP ICA
( cùng chắn cung AB )
Vậy hai tam giác đồng dạng trường hợp góc – góc
Suy ra
MD IC
MP IA

=
=> Tích chéo bằng nhau & thế IC =IB
b) Chứng minh hai tam giác MDQ và IBA đồng dạng :
·
·
DMQ AIB=
( cùng bù với hai góc bằng nhau ) ,
·
·
ABI MDC=
(cùng chắn cung AC)
=>
MD IB
MQ IA
=
đồng thời có
MD IC
MP IA
=
=> MP = MQ => tỉ số của chúng bằng 1
Bài 5 :
2 2 2
2 2 2
1 1 1
a a ab ab ab
a
b b b
+ −
= = −
+ + +

tương tự với 2 phân thức còn lại suy ra
2 2 2
2 2 2 2 2 2
( )
1 1 1 1 1 1
a b c ab bc ca
a b c
b c a b c a
+ + = + + − + + ≥
+ + + + + +

2 2 2
3 ( )
2 2 2
ab bc ca
b c c
− + +
Ta có
2
( ) 3( )a b c ab bc ca+ + ≥ + +
, thay vào trên có
2 2 2
1 1 1
a b c
b c a
+ + ≥
+ + +
3 – 9/6 => điều phải chứng minh , dấu đẳng thức xảy ra khi
và chỉ khi a = b = c = 1


×