^ 
DAI HOC
 Qudc GIA
 HA
 NOI 
TRllONG DAI
 HOC KHOA HOC
 TV
 NHI£N 
Va
 Khic
 Bay 
TCVH
 TOAN
 TRANG
 THAI
 DAN
 DEO
 CUA MOT
 SO
 K&V 
CAU
 emu QUA TRENfH
 DAT
 TAI
 PHtfC TAP
 BANG 
PHUONG
 PHAP
 BI^N
 rafi
 NGHltM
 DAN
 HOI 
C!)uj<n
 ngan!)
 :
 Co hoc vat
 r^n
 bI6n
 dang 
Ma id
 :
 1.02.21 
Luan
 ^n Pho tI6'n si
 Khoa
 hoc
 To6n
 -
 Ly 
Ngirdi hirorng ddn
 khoa hoc
 : 
Gido su Ti^n sT
 Dao
 Huy
 Bich 
'•y.o\\ 
H^
 Noi - 1995 
t
 • 
 ^. 
^«*w 
MUC
 LUC 
• a 
MyCLUC 
MO
 DXU
 1 
Oiirangl
 cAc
 H$
 TEFDC
 CO
 BAN
 CXJALYTHUY^QUA
 TRINH
 BI€N
 DANG 
DAN
 DEC
 VA
 PHiroNG
 PHAP
 BE6J
 TH£
 NGHI^M
 DAN
 Hbl 
$ 1. Cac
 h6 thitc
 co ban m6 ta ly
 thuy^t
 qua
 trinh bi€^n
 dang 
dan deo 7 
$ 2. Bai toan
 hitn
 va
 phuong
 phap
 bi€h
 th^
 nghifim
 dan
 hbi 
cua
 thuylEt
 qua
 trinh bi6h
 dang dan deo. 13 
2.1,
 B^i
 toan bi6n cua ly
 thuyfit
 qua trinh
 bifih
 dang dan deo 13 
2.2.
 Phirang
 phap
 bi^n
 th^
 nghifem
 dan
 hbi
 trong ly thuyet 
qua trinh
 bi&i
 dang
 d^
 deo. M6 hinh tinh toan. 14 
Qiirang IL
 KHAO
 SATPHUONG
 PHAP
 BI6V
 Trf
 NGHI$M
 DAN
 HOI 
TRONG
 MOTSO
 BAI
 TOAN
 PHANG
 CHIU
 TAI
 PHtfc
 TAP. 
$ 1. Trang thai dan deo cua
 6ng
 d^y
 chiu ap
 luc
 trong va
 lire keo 
doc
 true
 23 
$ 2. Trang
 thdi
 dan deo thanh tron chiu xoan va
 lire
 keo doc
 true
 37 
$ 3. Trang thai dan deo cua ban
 trdn
 mat chiu
 lire
 phap va
 bi6n 
chiu keo nen
 d^i
 xiitig
 46 
$4.
 Nh$n
 xet cac
 k^t
 qua trong
 churofng
 II 58 
Oiwang III KHAo
 SAT
 PHITONG
 PHAP
 BI€N
 Tsi NGHE^M
 DAN
 nbi 
TRONG
 MOT
 S6
 BAI
 TOAN V6 
$ 1. V6 tru
 ttra tir
 do
 trfin
 bi^n,
 chiu
 lire
 mat phan
 b<5
 va thay doi 
tayy
 59 
$ 2. Trang thai dan deo cua
 Itrdi
 d^
 cong c6 dang v6 tru 76 
$3.
 Nhanxet
 103 
Chirang
 IV
 KHAO
 SAT
 PHITONG
 PHAP
 BI£N
 TH^
 NGHI$M
 DAN HOI 
TRONG
 BAI
 TOAN
 KH6NG
 GIAN 
$ 1. Tru tron ngan chiu tai
 phiJc
 tap 104 
$2.
 Nhanxet 124 
KftT
 LUAN 125 
TAI
 U&V
 IHAM
 KHAO
 127 
PHULUC 
MO DAU 
Nghien cihj
 trang
 thdi img
 su^t,
 bifi^n
 dang trong
 vat
 tli^
 d^n
 deo ma 
ra
 tri^n
 vong su dung
 ddy
 du kha nang
 1km vi6c
 cua vat
 li^u.
 D6i 
tuong nghifin cuu
 cua ly
 thuyft
 deo bao
 gdm nghidn cun
 quy
 luat ung 
xu
 cua vat lieu khi co
 bi^n
 dang deo
 vk
 c^c
 phacfng phfip
 giai
 cdc bki 
todn
 cua
 1^
 tliuyft
 deo
 xu^t ph^t tilr
 c^c
 ytu clu
 cua
 iJitrc
 ti^n.
 Hifin
 nay 
1^
 thuyft
 deo
 ph^t triln
 theo 3
 hudmg chlnh
 [ 68] :
 L^
 tliuyft qud trlnli 
bi^n
 dang
 dkn
 deo,
 i^
 thuyft
 chay
 vh
 ly
 thuyft
 tnrcrt. 
Trfin
 ca so
 c4c k6t
 luan cua vat
 15^
 vk nhmig s6 lifiu tlif
 nghifim, 
ngir6i
 ta nit ra
 ducrc
 c^c
 quy luat
 cd
 b^
 v& cilng vdi cdc
 h^
 time
 co s6 
cua ca hoc vat ran
 bi^n
 dang, lap
 thknli he
 c^c
 phirong
 trinh ca ban 
cua
 1^
 thuyft
 deo.
 VSn
 d^
 r^t
 quan trong
 ti^p
 theo
 1& dua
 ra
 c^c 
phiTong phdp
 giai
 cdc bki
 to^
 deo
 . 
M6t
 dac
 di^m
 ro net cua ly
 thuyft
 deo la
 tinli ch^t
 phi
 tuyfi^n
 cua 
c^c
 phirang trinh ca
 b4n,
 do do khi giai
 c^c
 b&i to6n nky tlm^g
 gap 
phai
 c^c
 kho khan
 v^
 mat toan hoc, vi
 vay ciing
 vai
 vide tiin kiS^m cdc 
phuang
 phap giai
 tich
 ( ma
 thudng
 gap cac
 bi^u time todn
 hoc
 r^t 
phiTc
 tap
 ),
 phuang
 ph^p
 g^
 dung dong
 mdt
 vai tr6
 r^t
 quan trong.
 C4c 
phiTOng phdp
 g^
 dung
 nky xu^t hifin
 do
 yfiu
 c^u
 cua
 time
 ti^n,
 no phai 
phii
 hop
 vdi
 cac ca so khoa hoc cua ly
 thuyft,
 vi^a
 phai don gian
 d6 dt 
sir dung
 [30,42,
 45,
 52]. 
M6t s6
 phuang
 ph^p gM
 dung da
 dagc dua
 ra
 va
 su dung : 
-
 Plmong phdp nghiem
 dan
 hbi
 trong ly
 tliuyfi^t biCn
 dang dan deo
 nlio 
Iliusin
 [ 30 ]: Day
 Ih.
 m6t
 phuang
 phdp
 g^i
 dung
 duac sir
 dung
 rfft 
hieu
 qua, phuang
 phdp nky
 cung duac su dung cho ly
 tlmyC^t
 chay [4]. 
Ngucri
 ta da su dung phuang
 phap
 why
 di
 giai
 quyCt hhng loat bki lodn 
15^
 tlmyft
 deo [ 34, 46 ]. Bang phuang phap
 nhy
 ta dua
 vific
 giai
 b&i 
todn bien
 phi
 tuyfi^n vS vific
 giai
 liSn tifi^p
 c^c
 bai
 toan cua ly
 tlmyft dkii 
hbi
 cua vat
 th^
 thu^
 nh^t,
 dang
 hudiig
 vai
 tii ngoki va
 luc
 kh6i
 phu 
them.
 Sir hdi
 tu cua phuang
 ph^p nghiem dhn hbi
 duac
 cliihig minli 
1^1
 dau
 tien do V.Panfiorov [ 39, 40 ] trong khi
 ti^n hknh
 nghien cuu 
bai toan bi^n
 dang
 dkn
 deo cua ban
 \k
 v6.
 Qiirng
 minh su
 h6i
 tu 
trong tnrdng hop tdng
 qudt
 duac I.I. Vorovich
 va
 Ju.P. Crasovsky 
tli^
 hien trong c6ng
 trinli
 [15]. Do
 tInh chat
 cua
 ham
 deo co
 Uioa 
man:
 0^
 a)(€j<,
 a}{ej + —e„<l cdc
 t^c
 gia
 da chi ra rang : day
 c^c 
nghiem
 hOi
 tu theo
 chudn
 cua
 khdng
 gian Hilbert
 vfe
 nghiem suy
 rOng 
cua
 bai todn
 bien. Khao
 sdt t6c d6 h6i
 tu cua phuang
 phdp nay
 da 
duac D.L Bucov
 va
 V.A Satsnhev
 tifi^n
 hanh trong c6ng trinh [10 ] 
va
 d^
 tang i6c
 d6 h6i
 tu,
 cac
 tic
 gi^
 da dua ra
 ham mdi r(*jvdri 
Tie J = 1
 -
 [1
 -
 oKeJp
 I
 G\
 trong do
 G*
 > -, khi do 
a„
 =
 3G*e^[l
 -
 r(e„)].
 G.L
 Brovco
 va
 V.X Lensky da ma
 rdng 
phuang
 phap
 tren cho vat
 th^
 khOng thu^n
 nhat c6
 tInh de*n
 nhiet
 d6 
va bite
 xa [ 7 ],
 cdc
 tie
 gia
 da
 thift
 lap quan he : 
g(^. 
,r,/;)^^^°^"-^(^-^'^\
 va
 ^(r,/^)=
 ^^I^^ii^ 
3G,e,
 -' ' '
 K, 
v6i Go.ATo la
 m6 dun
 tnrot,
 n6n
 th^
 tfch
 cua vat lieu khi
 khOng
 c6 buc 
xa
 va 6
 nhiet
 d6
 T^ 
Phuang
 phap
 tham
 s6 dan hbi
 thay
 d6i
 [ 5 ]: Trong phuang phap 
nay cac
 he
 thitc
 cua
 15^
 thuyet
 deo
 dugc vift dudi
 dang dinh luat Hooke 
ma
 rOng,
 cac
 he s6 trong do phu
 thu6c
 vao trang thai
 ung
 suat,
 bie^n 
dang.
 O
 g^
 diing
 dang
 x6t,
 cac lie s(5 nay dugc
 l^y
 liico
 gia tri
 tilr 
gan
 dung
 tnidc.
 Nhu
 vay bai todn
 dua
 vS
 viec giai lien
 ti^p cac bai 
toan
 cua
 15'
 thuyS^t dan hbi
 cua vat
 \hi khdng thuan
 nhat di
 hudrng. 
Chung minh su
 hOi
 tu cua phuang phap
 nay d6i vdfi
 vat
 tli^
 thuan nliat 
dang
 hudng
 dugc D.L. Bucov trinh
 bay
 trong
 cOng
 trlnli [9], trong 
do
 tac
 gia
 chl
 ra rang :
 ham
 deo co
 can tlioa
 man 
0<
 o){ej<.a)(ej^—e^<\
 .
 D6i
 vai vat
 tli^
 khOng thuan
 nhat
 va
 di 
hudng,
 chutig
 minh su
 h6i
 tu
 va danli
 gia
 t6c d6 h6i
 tu cua phuang 
phap
 tham
 s6 dan hbi
 thay
 ddi
 dugc XE.
 Umaruki
 trinh
 bay
 trong
 cac 
cdng trinh [49,50] 
-
 Riuang
 phap
 bifi'n
 phan
 va
 phuang phap sai phan huu han
 k^t
 hgp 
vai phuang phap
 gan
 dung lien
 ti5p
 [ 27, 48 ] . Do su phat
 tridn \^
 ky 
tliuat tInh toan
 trong
 nhung
 nam
 gan
 day,
 ngudi
 \s\
 sir
 dung
 nhi^u dC'n 
phuang phap sai phan
 hihi
 han hoac phuang
 phdp ph^i tir
 huu han
 ke^t 
hgp
 v(Ji
 phuang phap
 gan diing
 lien
 tifi^p
 [11,42,
 51, 54, 57,58}
 va 
phuang phap
 phan tiJf
 bien
 d^
 giai cac bai toan
 cua ly
 thuyft
 deo [53]. 
Nghien
 cihi
 phuang phap
 ph^
 tu huu han
 va
 khao
 sat
 su
 h6i
 tu cua
 n6 
trong
 tru&ng
 hgp
 bai toan tuyS^n tInh va
 ung dung
 vao
 trong
 cac
 bai 
toan
 deo da dugc
 rfft nhi^u cac tac gia
 quan tam : V.G.
 Konihep,
 J. 
Deklu,
 J.
 Jftriang,
 J.Fikx, XE.
 Umanxki
 , C.
 Johnson, Dd
 thuc hien 
phuang phap
 phan tir
 huu han,
 ngu5i
 ta
 timing lan lugt
 theo
 cac
 buac 
sau : 
a) Chia
 mi^i
 dugc
 x^t
 thanh
 cdc phan
 tu rieng
 biet,
 tren
 cac
 bien 
cua m6i
 phan tir
 d6 dugc
 xac
 dinh bai
 Uiu"
 tu
 cac di^m
 - goi
 la cac 
niit
 cua
 ludi
 chia. 
b) Dich
 chuy^n
 trong m6i
 phan
 tu dugc tuan
 tlieo m6t
 quy luat
 ham 
xac
 dinh,
 bao
 dam su tuang
 thich bifi^n
 dang
 va
 dang cua
 tliam
 s6 dich 
chuy^n
 cua
 niit. 
c)
 Nhd
 nguyen
 I^
 biefn
 phan Lagrang
 ma bai toan
 dugc
 chuy^n
 v^ 
giai he phuang trinh
 tuyfi'n tinh d6i
 vai dich
 chuy^n
 cua
 cac
 niit. 
d)
 Giai
 he
 va
 sau khi nhan dugc
 cac
 dich
 chuy^n,
 dSn de'n tInh
 ung 
suat,
 bi^n
 dang trong m6i
 phan
 tu. 
D6i vdi
 phuang
 phap nay nguofi
 ta c6
 th^
 nhan dugc nghiem vai
 btft 
ky
 d6
 chlnh
 x^c
 nao,
 khi
 ludi
 chia du tru mat. Tuy nhien, thuc
 te^
 khi 
thuc hien phuang
 phap nay
 se
 nay
 sinh
 m6t
 loat cac kh6
 klian,
 vi
 nliu 
m6t
 trong
 cac
 kho khan d6
 la
 su lien he giua
 m6t s6 cac tpa d6
 cua 
cac nut dang
 t6
 ong
 va m6t kh6i lugng Idn
 th6ng tin
 khdng
 du
 chlnli 
xac. 
Difeu khac
 nhau ca
 ban giiia cac
 1^
 tliuyfi^t
 deo
 la
 he thuc vat
 1^
 lien 
he giua
 cac
 thanh
 phan
 ung
 suat va cac
 thanh
 phan biC^n
 dang. Ndi 
chung, quan he ung
 suat
 -
 bie^n
 dang trong ly
 tliuy^t qua
 trinh
 biffn 
dang
 dan
 deo
 la
 quan
 hS phidm hkin ,
 nhung
 v6i
 viec dua
 vao
 gia
 thiS^t 
xac
 dinh dia phuang
 va
 gia
 thift dbng
 phang, da
 nlian
 dugc quan he 
ham
 trong he
 thiJc giira ihig suat va bi^n
 dang [ 68] , do do c6
 thd ap 
.dung
 hieu qua
 1^
 thuyS^t
 deo nay vao cac
 bai
 toan trong thuc
 t^
 ky 
thuat
 Trong
 1^
 thuyfi't
 chay cung nhu cac ly
 thuyft
 deo
 tiuac day
 chi 
chua
 m6t ham
 vat lieu (
 ham
 chay ), nhung trong ly
 thuyft qua
 trinli 
bie^n
 dang
 dan
 deo thi
 chiia
 hai
 hkm
 vit
 lidu,
 m6t ham
 dac trung cho 
tInh chat
 v^c
 ta
 va ham
 kia dac trung cho
 tInh
 chat v6 huang cua vat 
lieu, vi
 vay
 n6
 phan anh
 dung han su
 lam
 viec cua vat
 tli^
 bi6i
 dang 
deo khi dat
 tAi
 phuc tap. 
Do
 tinh
 chat qui trinh cua ly thuyet
 nay ma
 cac he
 thitc
 ca ban cua 
no iai cang
 phiJc
 tap.
 D^
 giai cac bai toan bien cua ly thuyet qua trinh 
dan deo, trong cac cong trinh [ 19,64, 66, 68] , tac gia da dua ra cac 
phuang phap gan dung : Phuang phap bien the nghiem dan hoi, 
phuang phap nghiem dan hoi
 utig
 vai
 toe
 do, phuang phap tham so 
dan hoi thay doi ung
 vdi tdc
 do, cac phirang phap bien phan va phuang 
phap sai phan
 hiru
 han ket hgp vai phuang phap
 g^
 dung lien
 tiep, 
cac phuang phap
 gfln
 dung lien tiep ket hgp vai phuang phap
 phln tir 
hiru han. Mot phuang phap
 rat
 co hieu qua trong so cac phuang phap 
gan diing
 dugc
 neu
 tren la phirang phip bien
 thenghiim
 dan hoi trong 
ly
 thuyit
 qui trinh
 biSh
 dang dan deo [ 19, 66]. De
 sir
 dung phuang 
phap
 gki
 dung nay, ta chia qua trinh dat tai thanh nhieu giai doan.
 O 
m6i giai doan tai, ta phai giai lien tiep cac bai toan dan
 hbi
 cua vat the 
thuan nhat, dang
 hirong vdi
 luc khoi va luc mat phu them. Cac luc 
them
 nay
 phu thu6c khong nhung vao cac gia tri
 tinh
 dugc trong
 lln 
lap ke truac ma con phu thu6c vao cac gia tri trong cac giai doan 
trudc
 giai doan dang xet. 
Vdi m6i mot phuang phap
 g^
 dung, de cd
 th^
 chap
 nhan dugc hay 
khong la phai chung minh dugc su hoi tu, khao sat
 toe
 do hoi tu cung 
nhu su on dinh cua nd. Su hoi tu cua hai phuang phap nghiem dan hoi 
va phuang phap tham so dan hoi thay doi cho bai toan bien ly thuyet 
qua trinh dan deo
 ihig
 vdi
 tdc
 do da dugc chung minh chat che ve mat 
ly thuyet trong cac cong trinh [65, 67, 68]. Doi vdi phuang phap bien 
the nghiem
 dan hbi
 cua ly thuyet qua trinh
 biSn
 dang dan deo de xac 
dinh ban than cac dai lugng
 chuye'n
 dich, bien dang,
 utig
 suat,
 do
 tinh 
phiJc
 tap cua cac he
 thitc,
 cho
 deh
 nay chua cd dugc chutig minh ve 
mat ly thuyet su hoi tu, tdc do hoi tu cua nd. 
Chfnh
 vi
 vay
 ma trong luan an nay
 d^
 ra muc
 dich
 nham giai quyet 
hai
 van
 de : 
1)
 Sir
 dung phirang phip
 biih thSnghidm
 dan
 hdi
 cua ly
 thuySt
 qui 
trinh
 biSh
 dang dan deo
 Ai tinh
 toan trang thai
 ung
 suat, bien dang cua 
m6t
 sd
 ket
 c^u
 di^n
 hinh chiu qua trinh dat tai
 phifc
 tap
 (tiJc
 la cac 
thanh
 ph^
 tai phu
 thu6c
 vao mot tham sd t ). Cac bai toan deo nhu 
vay
 la
 Idp
 cac bai toan con ft
 dirge
 nghien cuu. 
2) Tren ca so
 k^t
 qua
 tinh
 bang sd cac bai toan tren, khao sat su hdi 
tu,
 tdc
 dd
 hdi tu va
 sir
 6n dinh
 cua
 phuang phap
 g^
 dung nay. 
N6i
 dung luan
 an gbm
 4 chuang,
 phan
 md
 dau va
 k^t
 luan. 
PbaatD&dau:-
 Neu
 tinh
 chat chung
 ciia
 cac ly
 Uiuye^t
 deo
 dSn
 d€\\ 
ddi
 hoi phai cd
 cac
 phuang
 phap gan
 dung
 phd
 hgp vdi nd. 
- Gidi
 tliieu
 cac phuang phap
 gan
 dung trudc day 
trong
 cac
 1^
 thuye^t
 deo
 va
 su md rdng cua nd. 
- Neu
 tinh
 chat dac
 W\h
 ciia
 ly
 lliuyft qua
 trinli
 biCn 
dang
 dan
 deo
 va
 su
 can thift
 cua phuang phap
 bi^n
 th^
 nghiem
 dan 
h(5i
 trong
 1^^
 thuyft qua
 trinh
 bi^n
 dang
 dan
 deo. 
- Neu muc
 dich,
 phuang thuc giai
 quyft van
 d^
 cua 
luan
 ^i\. 
Cbatmg
 Ih
 cac
 he
 time
 ca ban
 ciia
 ly
 tliuyS^t qua
 trinli
 bi^i
 dang 
dan
 deo
 va
 phuang
 phap bi6i
 tli^
 nghiem
 dan
 hdi. 
- Dat
 bai toan
 bien cua
 1^
 thuyft qua trliili bi6i
 dang
 dan 
deo khi chiu tai phuc tap. 
- Neu phuang phap
 bie^n
 th^
 nghiem
 dan
 hdi trong ly 
tliuyft qua
 trinh
 bifi^n
 dang
 dan
 deo. 
- Neu md hinh
 tinh
 toan cua phuang phap
 bi^n Uid 
nghiem
 dan hbi
 trong phuang phap
 tinli. 
Cbmmg
 II:
 Khao sat cac tinh
 chat dac trung cua phuang
 phdp 
bie'n
 th^
 nghiem
 dan
 hdi trong
 Idp cac bai toan
 phang chiu tai
 tlieo
 quy 
luat
 bat
 ky
 thdng
 qua viec
 giai cac bai
 toan : trang thai
 dan
 deo cua 
dng
 day
 chiu
 ap suat
 trong
 va
 k^o
 -
 n^n
 doc
 true;
 trang thai
 dan
 deo 
cua tru trdn chiu keo - n€x\ doc true va chiu tac dung cua
 ni6
 men 
xoan; trang thai
 dkn
 deo
 ciia
 ban tron cd
 16 hdng
 chiu dan -
 n^n
 tren 
bien
 va
 tren mat chiu luc phap tuy y. Nhan
 x^t
 chung
 v^
 phuang phap 
bie^n
 th^
 nghiem
 dan
 hdi trong Idp
 cac bai
 toan
 nay. 
Cbumg
 III:
 Khao
 sat
 trang
 tliai dan
 deo cua he
 dam ludi
 dang v6 
tru
 va m&nli
 v6 tru chiu tai trong phan bd
 tUy
 y tlieo quy luat
 bat
 ky. 
Nhan
 x6t
 chung
 v6
 phuang phap bie'n
 th^
 nghiem
 dan
 hdi trong
 Idp cac 
bai toan
 nay. 
CbmmgIV.
 Khao sat
 phuang
 phap bie^n
 th^
 nghiem
 dan
 hdi trong 
bai toan
 khdng gian : tru tron ngan chiu
 tai
 ddi xung
 true,
 nlian
 x^t
 v^ 
ke^t
 qua
 tinh
 toan. 
K^t
 luaa : Danh
 gia
 cac tinh chat
 dac tnmg cua phuang phap
 bien 
tlid
 nghiem
 dan
 h^i
 trong ly
 thuyfi^t
 qua trinh
 bifi^n
 dang
 dan
 deo
 va klia 
nang
 ap
 dung cua nd, Neu phuang hudng cd
 th^
 tie^p
 tuc nghien
 cihi. 
cac ktt qua
 ca
 ban
 cua
 luan an
 da dugc
 bao cao
 tai
 cac
 Hdi nghi 
khoa hoc
 va
 Xemina: Xemina
 toan nganh
 Ca hoc vat ran bie'n dang; 
Xemina bd mdn Ca hoc khoa
 Toan
 - Ca - Tin hoc, tnrdng dai hoc
 T6ng 
hgp
 Ha
 ndi; hdi nghi Khoa hoc khoa
 Toan
 - Ca - Tin hoc Dai hoc Tdng 
hgp
 Ha
 ndi
 11-1994,
 hdi nghi Ca hoc toan qudc
 lan thit
 nam 1992, hdi 
nghi Ca hoc Vat ran
 bififn
 dang
 toan
 qudc
 lan thir
 tu 1994.
 Cac
 ke't qua 
chlnh cua
 luan an
 da dugc cdng bd trong [59, 71, 72, 73 , 74].
 Luan an 
dugc
 hoan
 thanh tai bd mdn Ca hoc thudc khoa Toan - Ca - Tin hoc, 
tnrdng Dai hoc Khoa hoc Tu nhien - Dai hoc Qudc gia
 Ha
 ndi. 
CHITONG
 I: 
CAC H$ THtrC CO
 BAN
 CUA
 LY
 THUYfiT QUA 
TRINH
 JM£N
 DANG
 DAN
 DEO vA PHl/ONG PIlAP 
BI€N
 THfe NGHI$M
 DAN
 HOI 
Trong chuang
 nay
 trinh
 bay
 cac
 he
 tliuc
 ca ban md ta
 qua
 trlnli 
bie'n dang
 dan
 deo ,
 cac
 he
 tliitc
 cua bai toan bien cua
 ly
 tliuyft
 qua 
trinh
 biffn
 dang
 dan
 deo
 va
 ndi dung ca ban cua phuang phap
 bidn
 lii^ 
nghiem
 dan
 hdi
 va
 md
 hiiili
 tinh
 toan cua phuang
 phap
 nay. 
$
 1. CAC
 11$
 Tlltlt
 CO BAN MO
 TA.
 LY
 11IUY£T
 QUA
 TRINII 
BI£N
 D^G
 DAN DEO. 
Khi
 xay
 dung
 cac
 md hinh cua
 cac
 ly
 Uiuyft
 deo, ngudi ta dua
 IrCn 
cdc
 quy
 luM
 ca ban cua vat ly, cua
 nliiet dOng
 hoc
 va
 cac
 dac
 tnnig
 ca 
hoc cua vat lieu. Ndi chung, mdt ndi dung vd
 cilng
 quan trong trong 
cac
 ly
 Ihuye't
 deo la
 xay
 dung mdi lien he
 vSt
 ly
 giua ung
 suat
 va
 bie'n 
dang khi vat
 th^
 chiu tic dung cua cac
 difeu
 kien ngoai : chiu tai, nliiet 
dd, buc xa, Dudi tic dung cua qua trinh dat tai thi
 xuat
 hien ben 
trong vat
 th^
 dan deo
 qua
 trinh
 bie^n
 dang, ung
 suat.
 Trang thai ung 
suat
 tai mdt
 tlidi
 di^m
 nao do (
 klii
 vat
 tli^
 lani
 viec d ngoai gidi han 
dang hdi ) se phu
 tliudc
 vao
 lich
 su
 qua
 trinh
 bi6i
 dang, tuc
 la
 phu 
thudc
 vao
 qua
 trinh dat tai. Cac ly
 tliuyft
 deo trudc day da md la duac 
chilmg
 muc
 nao
 day
 hien tuong dd.
 Lf
 Uiuydt
 qua
 trinli
 biCn
 dang
 dan 
deo
 xuat
 hien la mdt
 each tie'p
 can
 khac
 d^
 \&y
 dung quy
 luM
 ddi xu 
deo cua vat
 tlie\
 phan
 anh
 dugc
 qua trinli ca ly xay ra trong vat lieu. Ca 
sd cua
 1^
 tliuy^t
 nay
 dua tren dinh
 dS
 dang hudng
 vh
 nguyen ly cham 
tre
 cua Iliusin [30, 68]. 
He qua cua dinh
 dfe
 dang hudng cho lien he giua cac
 v^c
 ta ung
 suat 
va bie^ri
 dang : 
a=a^cosd„.p^
 (1.1.1) 
cos
 9„
 cos
 ^„
 =
 1
 (
 n
 =
 1
 ^5
 ) 
—•
 -» 
Trong dd
 a
 - v€c ta
 ihig
 suat,
 cr^
 -
 la
 c&ang
 dd ung
 suat,
 |
 p
 J
 -
la
 re-pe tu nhien cua quy dao
 bi6i
 dang ,
 ^„
 -
 la goe
 dinh
 liudng
 cua 
8 
vdc
 ta ung
 suat
 theo
 'p „
 .
 Theo
 dinli dl
 dang hudng thi
 cr^,
 0„
 chi 
phu thudc
 vao
 hinh hoc ndi tai cua quy dao
 bifi^n
 dang
 va
 theo nguyen 
1^
 cham
 tr6
 thi chung chi phu tliudc
 vao lich
 su
 qua
 trinli
 bi^i
 dang 
cua doan hiru han quy dao
 bi^n
 dang trudc dd, doan
 nay
 dugc goi
 la 
\A
 cham
 tr§ //.
 Do
 vay
 a^,
 6„ Ih phi^m ham
 cua dd cong, dd xoan
 x^ 
cua quy dao
 bie^n
 dang, cua dd
 dai
 cung s cua quy dao
 bi6i
 dang
 va 
cdc
 ham vd hudng dac trung cho su thay ddi cac
 difeu
 kien
 vM
 1^
 cua 
qua
 trinh.
 Cac
 dai lugng
 nay bat bie^n
 vdi
 ph^p
 quay
 va ph^p
 chi^u,
 tuc 
la
 ta cd : 
^u = ^u[Zm(s).P(s)J(s)y
 (1.1.2) 
s - n 
Ou
 =
 0u[Zmis),pis),
 Tis')y^_^
 („
 =1,
 5
 ; m
 =
 1,
 4 ) 
trong dd
 s
 -dd
 dai
 cung quy dao tuc
 tlidi
 cua quy dao
 bifn
 dang
 s,p 
- ap
 suat,
 T-nhiet
 dd. 
Viec
 xac
 dinh
 cac tinh
 chat,
 cau
 tnic giai
 tIch ciia cac phi^m ham va 
cac
 gia tri cua cac dai lugng dac trung trong
 cac
 he
 time
 (
 1.1.1
 ) -
(1.1.2
 ) gap
 rat nhiSu
 khd khan, ddi hdi phai cd nhung nghien cuu 
tie'p theo. Tuy nhien do yeu
 cau
 cua thuc tien ky thuat
 nen can
 cd
 ly 
thuy^l vira
 md ta dugc
 cac qua
 trinh
 bi^n
 dang phuc tap
 vilra
 d^
 sir 
dung,tuc
 la can
 cd
 cac
 nguyen ly bd sung
 nliam
 dan
 gian
 hda md hinh 
va Ihie't lap
 mdt sd dang
 I^
 thuyet
 deo
 phii
 hgp vdi thuc
 nghiCm
 .
 D^ 
lam di^u
 nay,
 can
 cit vao nhiSu kft
 qua
 tliuc
 nghiem ngudi ta dua ra 
gia
 thift xac
 dinh dia phuang [
 68].
 Thuyft nay
 khang dinh rang : 
Tifc
 dd thay ddi cua cic goc chi phnang cua cic vec ta ung suit 
trong
 ri'pe
 tu
 nhiin
 cua quy dao
 bi6h
 dang
 —j^
 vi tdc dd thay ddi 
circmg
 dd
 ihig suSit ~^ li
 him
 ciia cicgii
 tri
 tiic th&i
 cua
 O^.a^
 ,
 dd 
as 
cong
 vi
 dd dii quy dao
 bidh
 dang: 
2-=/„(^jt,C7„,/^,5)
 (1.1,3) 
ds 
da 
ds 
=
 y/{ei,,(7,,Zp.s) 
cos
 ^„ COS ^„
 =
 1
 ( k = 1, 5 ; n = 1. 5 ; p = 1,4) 
vdi
 difeu
 kien ban
 dau (J„
 =
 c^^
 ,
 9^
 =
 0„^
 klii ^
 =
 ^o 
Qui ^ r&ng cac
 phuang trinh trong
 (1.1.3)
 khdng chua
 cac phififm ham 
ma la cac ham /« va
 q/
 ,
 do
 vay
 <T^,
 0^
 se
 la
 nghiem cua he 
phuang trinh vi phan thudng phi
 tuye^n
 (1.1.3).
 Cac ham /„ va \p 
hoan toan
 dac trung cho
 tinh
 chat cua vat
 lieu
 trong
 qua
 trinli dat
 tii 
phuc tap, nd dugc
 xay
 dung tren ca sd tliuc nghiem
 va
 phai cd
 cac tinh 
chat
 d^
 dam
 bao su
 tbn
 tai
 va
 duy
 nliat
 nghiem cua he
 (1.1,3).
 Theo 
cac
 sd lieu thuc nghiem ngudi ta dua
 vao
 gia
 thift
 ddng phang cua 
vdc
 ta
 ling
 suit, vec
 tagia sdiing
 suit, vec ta tdc dd
 biih
 dang.
 Vdi gia 
thift nay \€c
 ta ung
 suat
 nam trong mat phang
 niM ti^p ciia
 quy dao 
bi^n
 dang,
 nen tilr (I.l.l
 ) ta cd : 
a= a„(cos ^p^^i + cos
 O^.p^) 
-*
 —> -> 
hay
 a = ^^(cos
 O.p^-^
 sin
 6.P2)
 (1.1-4) 
vdi
 9=
 0\
 la
 gdc
 ti^p can
 cua vec ta ung
 suat
 vdi
 ti^p iuy€n
 quy 
dao bieh dang . Theo dinh
 nghia
 ta cd : cos
 d,
 = 
cT.p, 
do dd : 
d0_ 
ds sin 0, 
d_ 
ds 
\ 
dp. 
ds sin
 0, 
Dat /
 =
 -
—» 
P\ 
sin
 9^ 
d 
ds 
(
 ^ \ 
a 
rJ 
do 
ds 
XxP: 
va
 Pi'Cr-
 a^cosO^
 = Icr^.sin
 0^ 
do 
nen tacd:
 -^^f{0,a^,s)^Xx 
(1.1.5) 
trong dd
 ham /,
 theo
 gia tliift
 xac
 dinli
 dia phuang,
 klidng
 phu thudc 
hi^n vao
 dd cong
 x ^^
 1^
 '^^i cua
 6
 ,
 O"^
 ,
 5.
 CBng
 tlieo
 cac
 sd lieu 
tliuc nghiem [
 68]
 g\k
 thift
 rang
 ham ^
 trong
 (1.1.3)
 klidng phu 
10 
\ho d6
 cong
 x cua
 dd cong quy dao
 bi6^n
 dang,
 sir anli
 hirong cua
 d6 
cong
 v^o
 no
 diroc
 th^
 hien gian
 ti^p
 qua goc
 6,
 tuc
 1^
 : 
da-
ds 
"-=
 yf{e,(j,,s) 
(1.1.6) 
Nhir vfiiy hkn / v& hkii ^
 klidng phu
 thu6c v&o
 dang cua quy dao 
bie'n dang,
 chiing \h cdc
 h^
 dac tnmg
 ciia
 cua
 vflt lifiu
 . 
—»
 —• 
Dao
 ham (1.1.4)
 theo s
 va
 chu
 ^
 rang
 p.
 =
 —
 , ^ =
 X\Pi^ 
ds ds 
ds 
XvPv 
va
 Cling vdi
 (1.1.5),
 (1.1.6) dan vS 
da 
ds 
—
 ^f>ctg9\a 
a,./
 d. 
V^u 
sin
 0
 ds 
r\
 ^ I -*
 d
 3 
Do cos
 ^ =
 —.
 a. 
ds 
nen
 ta duac 
sin
 0 
¥
 _^^u/ 
cos 6 sin
 ^ 
CT.d^
 -
—;—cr 
(1.1.7) 
Lien he
 nguge
 Iai : 
,
 -•
 sin
 ^
 ,
 -* 
a 3 =
 d
 (7+ 
sin 6 cos 6 
+ 
^uf 
¥ 
ad a 
a 
(1.1.8) 
Nffu bi^u di6n dirdi
 dang
 ten-xa
 ta
 dirge
 : 
^.,
 =
 -
2a,.f 
3 sin
 e "'^ 
i 
 + 
W
 ,
 ^uf 
cos
 ^
 sin 6 
§M^_S 
(1.1.9) 
CT=3Ke 
(1.1.10) 
Theo [ 61 ]
 cdc
 h^
 /,
 f cd
 dang
 hi^n
 sau
 dfly 
11 
/ = -
sin 6 
1 + 
3Gs 
V '^u 
-1 
( 
1 -
 COS
 6 
(1.1.11) 
V^=
 ^'(;y)cos^,-(3G-f(5))[ 
1 - cos
 ^ 
9
 =
 arccos
 —^^-^ 
CTu^u 
(1.1.12) 
(a>l,^>l,0<<9<;r) 
Sy ,
 e^j
 la cac
 thanh
 phan
 cua ten - xa lech ung
 suat va
 ten - xa
 lech 
bie^n
 dang.
 Chii ^
 rang
 cac ham /,
 V^
 d
 day dfeu
 su dung cho
 ca qua 
trinh bieh dang chu ddng
 va
 bi ddng . 
•
 Cac
 trudmg hcjrp
 rl6ng: 
+
 QU&
 trinh
 biffn
 dang
 dan
 hdi: 
(T^
 = 3Gs
 ,^'(5) =
 3G
 , 
r
 3G
 .
 ^ 
/
 =
 -—sm^ 
(1.1.13) 
^^=3G.cos^ 
he thiJc (1.1.9) dfin vS
 dinh
 luat
 Hooke
 : ^ ,j = 2Gd 
+
 (^a
 trinh dat
 tAi
 dan
 gian
 : Khi dd cd
 0
 = 0 
Lim 
<^o
 sin^ 
/ _
 1 
Lim
 ly
 =
 (h\s)
 z:>
 (1.1.9) dfin vfe 
^.4^,,.(^.(.)-^]| 
(1.1,14) 
Mat khac, theo
 1^
 thuyft bie^n
 dang
 dan
 deo nhd cho
 qua
 trinli dat tAi 
don gian ta cd : 
12 
Stj =
 3-^^./
 , hayl& 
^.= 
2 a, 
f 
'
 3f.,
 ^ 
e„ + 
^ 
^& 
^
 ^'^u
 «^u
 y
 ^u 
(1.1.15) 
V6i qud
 trinh dat tai
 dcfn
 gian ta co: 
^ = ^u;^= ^u =
 ^u\ 
da 
 da 
ds 
ds 
"-=
 r(s) 
thay
 vao (1.1.15)
 ta
 dSn vS
 dugc
 (1.1.14). 
+
 Qu&
 trinh bie'n dang vdi dd cong trung
 binli:
 trong qua trinh nay do 
gia
 triG la
 nlid,
 nen
 : 
I . 
e 
/
 = —
 sin
 6
 ^ —\
 y/
 =
 ^'(5)cos
 0
 ^ (ff'{s) 
s s 
Tliay
 vao(I.1.9) ta dugc 
0 
2
 \ 
'«-11^»
 ^
 ( 
r(s)-^ 
Sue 
id^'ki 
s
 J
 <TI
 ' 
(1.1.16) 
He
 thiJc (1.1.16) la
 tdng quat hda he tliuc Prandtl - Reuss cho vat 
lieu deo
 1^
 tudng
 va
 he
 tliiJc
 Prager cho vat lieu tai
 bSn
 . 
+
 Qak
 trinh
 cat
 tai:
 xky ra
 chae
 chan
 klii 0
 =
 7t , klii
 dd : 
Lim-^^
 ;L/m|^=-3G
 tilr
 (1.1.9) dan
 v^
 :
 ^,
 ^2Gi,, 
^ * sin p
 (J.
 <'-*
 * -' " 
Nhu
 vay
 lien he
 ung
 suat,
 bieh dang
 (M.9)
 -
 (1.1.12)
 cd
 Qi^
 md ta 
cho moi
 qua
 trinh bieh dang
 phitc
 tap ca dat
 tai va cat
 tii,
 cac
 he thuc 
cua
 1^
 thuyft biefn
 dang
 dan
 deo nhd,
 cdc
 he
 thu*c
 cua Prandtl - Reuss 
va
 cua Prager cd
 th^
 xem nhu tnrdng hgp rieng cua ly
 thuyet nay
 [68] 
13 
0
 3
 BAI
 TOAN
 BI£N
 VA
 PHirONG
 PHAP
 BI£N
 nii NG1I1$M 
DAN
 HbicuALTf TSUYh Qvk
 TRINH
 BI£N
 D^NG
 DAN DEO 
2.1
 B^i
 toan
 bi^n
 cua
 1^
 thuyet
 qua trinh
 bi^n
 dang
 d^n
 deo. 
. Cho vat
 th^
 chi^m mi^n Q
 cd mat bien S
 =
 Su
 ^ Sa . {
 Su
 r\
 Sa 
=
 0
 ),
 chiu
 tac
 ddng cua tai trong
 bat
 ky : luc
 klidi
 A^/(x,t)
 ,
 x
 e Q
 , 
luc
 mat
 I>,(xJ)litnS^
 va chuyfo
 vi cho trudc
 (p,
 Iren
 5^
 .
 CSd\ 
x&c
 dinh
 chuy^n
 vi
 ti^ixj) ,
 ten-xa
 bi^n
 dang
 ^y(-^,0 ,
 ten-xa ung
 suat 
CTfjixj) (trong
 dd:
 u.
 eC'{Q)r^O{Q),
 £,^,a,^
 eC'{Q)r^C\Q) 
vdi
 Q =
 Q^S
 ) trong
 mi^n Q va
 vdi moi i e [ 0, T ]
 tlida
 man he 
phuang trinli sau day : 
+ Phuang trinh can bang : 
+ He tliuc
 Cauchy
 : 
+
 P^/
 =0 , X€Q 
(1.2.1) 
1 
'•^
 2 
( 
—^+ ^ 
\^j 
dx 
X
 e
 Q 
(1.2.2) 
+ Phuang trinh
 xac
 dinli: 
3 sin 0
 " 
COS 0 sin 0 
¥ 
+ 
(1.2.3) 
cT=3Ke 
trong dd : 
/=-
sin^ 
1 + 
f3Gs j] 
I
 ^
 J 
fl-cosf?^ 
I
 2
 J 
a 
(1.2.4) 
14 
y/
 ^
 <I>\S)QOS
 0^-(3G
 -(p\s))l 
1
 -
 cos
 0Y 
(1.2.5) 
{
 a
 >
 \,fi
 >
 1,0
 <
 0
 <
 ;r) 
+
 DiSu
 kien bien
 :
 Cyrij =
 E^
 , ^^^^ 
u,
 =
 (p,
 ,
 xeS^
 (1.2.6) 
van dfe
 chung minh su tdn tai va duy nhat nghiem suy rdng
 bai toan 
bien
 (1.2.1.1)
 -
 (1.2.6)
 da dugc
 ti^n
 hanh trong cdng trinli [ 56, 68].
 D^ 
giai
 bai toan
 bien
 (1.2.1)
 - (1.2.6) ngudi ta da dua ra
 nhi^u
 phuang 
phap gan diing
 ( nhu trong
 phan
 md
 dau
 da gidi tliieu )
 va
 mdt trong 
cac
 phuang phap
 gan
 dung
 rat
 cd hieu qua
 la
 phuang
 phap bi6i
 lli^ 
nghiem
 dan
 hdi da dugc dua ra trong [ 17, 64, 66, 68]. 
2.2 Phuang phap
 bi^n
 th£^
 nghiem
 dan hdi trong
 1^
 thuyet 
q\i&
 trinh
 bl^n
 dang
 d^n
 deo. Mo hinh tinh
 to^n. 
Day
 la
 mdt phuang
 phap gan
 diing dugc phat
 tri^n
 tua nhu phuang 
phap nghiem
 dan
 hdi trong
 ly tliuye't bie'n
 dang
 dan
 deo nhd .
 Kliao 
sat cac van dS vS
 su hdi tu, tdc dd hdi tu, su
 dn
 dinh cua phuang phap 
nay
 cho den nay chua cd dugc mdt
 chitng niinli
 v^
 mat
 ly
 tliuyft.
 O 
day se neu ndi dung cua phuang
 phap gan
 diing
 nay va cac
 chuang 
sau se
 khao sat
 bang sd
 cac tinli
 chat cua nd qua viec giai
 cac
 lap
 bai 
toan khac
 nliau. 
1.
 Npi
 dung phuang
 ph^p
 : 
D^
 sit
 dung phuang phap
 g^i
 diing nay ta viet he thuc lien he
 bi^n 
dang
 va
 ung
 suat (1.2.3)
 -
 (1.2.5)
 dudi dang: 
dS,j=^Ade,j+{P-A)^^S,^
 (,.2.7) 
15 
trong dd : A
 = -
sin
 0 
r.„
 cT 
 Y1
 - cos
 6'V 
P = 
¥
 _ 
cos 6 
,V\
 (
 i'
 A(I-COS^) 
^ (0-[3G
 -
 ^
 {^)y-^, 
2^
 cos
 6* 
(1.2.8) 
Dat
 /l = 3G(l-£y,) ,P = 3G(l-fyJ 
khi
 d6: 
' 3G
 I
 3.G S 
1-
n
 - cos
 0 
(1.2.9) 
- = '-i^='-|E 
1 + 
n
 -cos 6'V 1 
COS
 Q 
v^
 (1.2.7)
 trathanh: 
dS,= 
2GJ„cJ^,
 -
 1Ga),5,,5^,
 -
 3G(ftjj
 -
 o),)
 " 
\ 
a". 
de,
 (1.2.10) 
"
 y 
Dal
 ^y«
 -
S,.S 
2Go)^6,^5,1
 +3G(GJ2
 - ft),)
 '-^ 
(1.2.11) 
»
 / 
Klii
 do
 (1.2.10) ti6 thaiili
 :
 ^5.
 =
 2
 Gde,,
 +
 /?
 «c/e^^
 (1.2.12) 
Do da =
 3Kde
 v^
 dat
 ;///,«=
 T-^^I*^//*/+
 ^//w (12.13) 
heUiiJc (1.2.12)
 dUnd^n: 
^c^y =(/l<Jy<5«+2GcJ,tJ;,+//y«)j£« (1-2.14) 
16 
tu.
 =
 1-—^
 ,
 CO,
 =
 I-
 -5^-y^
 (1.2.15) 
3.C/
 ,S
 3 .
 U 
Phuang phap
 bie^n
 th^
 nghiem dan hdi trong
 ly
 tliuye't qua trinli bie'n 
dang
 dan
 deo dugc
 tifi^n hanli nliu
 sau: 
Oiia qua
 trinh dat
 tai tiT
 thdi
 di^ni
 ban
 dau
 d^n
 tlidi di^ni
 dang
 x^t 
[0,t] thanli
 n giai doan
 :
 t^=
 mr
 ,
 /M =
 0,1,2,3, ;2
 . Rdi rac hda 
cac ham clEln
 tim tlieo tham sd
 /
 : 
u,{x,i,)
 =«/"'
 = ur + t
 ^" 
n 
m
 = 1 
^,(^./j =
 <"'
 =
 <'+
 2:
 AC'
 , 
m
 =
 1 
^.(^.'J
 =<'
 =
 <'
 +I
 A<'
 , 
m
 =
 1 
trong
 do:
 Auj"^
 =
 u,{x
 ,t„)
 -
 u,{x
 ,t„_^) 
Kill do
 tilr (1.2.12)
 tacd tli^vi^t 
n
 '^ 
5r = 2G<> + 2
 J^^v.^«^^
 (1.2.16) 
"=»
 Vi 
Trong
 (1.2.16)
 ta udc lugng
 tich phSn 
'JKne.dt =
 i[/?<r"
 +
 ^J^'lA^-"'
 =
 A„e,^
 (1.2.17) 
'1 I 
17 
rt-i 
Si"'
 =
 2Gej;^+X^'^'>j+^ne^ 
m=\ 
Tit (1.2.14)
 taco: 
(1.2.18) 
(1.2.19) 
Vdi udc lugng
 tlch
 phan
 : 
J 
tm-l 
_
 J_
 (m-\) (m) (m)
 _ 
Hijki
 e,jki
 -
 ^Hijki
 '^
 Hijki
 ^
 ^eu
 ~
 Am £ij 
(1.2.20) 
Nhirvay
 tilr
 (1.2.19)
 ta
 diroc
 : 
n-l 
o^f
 =
 Aei"^Sy+2Ge^^
 +
 X
 A.f,
 +
 A„^,
 (i.2,21) 
m
 =
 \ 
Tliuat
 giai
 cua
 phumig phap bie^ri {i\6
 nghiem
 dan
 hdi
 nliu
 sau :
 BiCt 
nghiem
 cua
 bai toan
 d
 cudi giai doan
 Ihu
 n-1
 ,
 nliu vay tlico (1.2.20) 
cdc
 dai
 lugng
 :
 Ai %,A2
 £);,.•
 A„_]
 61;
 ,
 hoac
 Uico (1.2.17) cac
 dai 
lugng:
 A\eij,/^2^ijy-^n-\
 ^ij ^^ ^^^^ ^^^ ^^^*' ^^ ^^^ ^'^^^
 nghiem 
cua
 bai toan
 d
 giai doan
 tliii*
 n : tai
 giai doan
 nhy se
 giai
 gan
 diing 
lien tifp
 ,
 nghiem
 gan
 diing
 tliu
 k cua
 bai
 toan bien
 (1.2.1)
 -
 (1.2.6) 
phai thda man
 cac
 phuang trinli
 sau : 
dx 
(1.2.22) 
18 
(".*)
 _ 
—
 (— +
 —=!
 ) 
2
 dx,
 dx, 
(1.2.23) 
m=\ 
Vol
 diSu kien bidn
 : 
[^e*^5,
 +
 2G^|;'*)]n,
 = sr-[^f
 A„5,
 +
 A<„*-%1.;,,
 txfin ^, 
«;"•*>
 =
 ^(") 
tren 5„ (1.2.25) 
trong do
 : 
=
 -[//,]-"
 + //,; '][< "-4-"j 
Vdi 
C(n.A-I)o(n.A-I) 
3G(a;^"**-'^-6;["-*-»>) 
(rt.A-1) i2 
[err-"] 
(n.A-l) 
ft; 
.'"•*"•'=('-^s^)['-( 
1 -cos
 0^"-^-^ 
3Gs 
)•]. 
(1.2.26) 
fi;<" 
-'^^ -
 ~3G—^^^
 "•-^JTZr^J^]
 (1.2. 
27) 
19 
(
 a ^1
 , P>1 ) 
cos
 ^c-*-')
 =
 -^ y 
in.k-l) ^^(n.k-l 
(1.2.28) 
yC",*-!)
 _
 _y("-') ^
 A^^"'*"' 
(1.2.29) 
vdi
 A5"'*-"
 = 
!(<•""-<"")•(<•""-<-") 
1/2 
(1.2.30) 
Tai
 lan
 lap
 tliu
 A-
 =
 0
 lay
 A%
 = 0 . Nhu
 vay
 d
 nidi
 l;\ii
 lap
 lliir k 
trong giai doan
 tliu
 n ta phai giai bai loan dan hdi tuyen
 llnh
 vdi
 luc 
klidi
 va
 luc
 mat khac di. 
Trong
 nhiSu
 trudng hgp,
 tliay
 cho (1.2.24) ta su dung cdng tliuc 
tuang duang theo dang cdng
 thiic
 (1.2.18),
 tiJc la
 d
 lan
 lap
 tliu
 k giai 
doan
 thir /?
 ta cd : 
rt-i 
6\J-*^
 = 2G.J-*UXA , +
 A^r»>e 
ij (1.2.31) 
m
 = l 
Trong dd ; 
20 
^V'e,
 =
 HRiu''
 +
 ^i;/*-"][<'*-'^
 - <M (1.2.32) 
n-1 
D^
 dl
 sd
 dung
 sau
 nay
 ta
 k^
 hieu
 :
 ^ij"'
 -^
 ^„^tj
 "^
 ^n
 ^^ij 
m=\ 
va 
'*{rt.k-\) 
n-\ 
khi
 do
 (1.2.24)
 v^
 (1.2.31)
 co
 th^
 vi^t 
CTJ,"'*^ =
 X0i"'''^Sy
 +
 2G4"-*)
 +
 cT^^"-*^ 
(1.2.33) 
'J
 U iJ 
(1.2.34) 
Difeu
 ki6n
 hdi tu : Tai
 giai doan
 tliiJ
 n
 cdc
 dai
 lircnig
 chuyfi'n
 dich
 c^i 
thoa
 man: 
i
 i 
<g 
^{n,k)_^{n,k-2) 
i i 
voi
 q<J
 (1.2.35) 
tircmg tir
 nhu
 vSy
 cho
 c^c
 dai
 lucmg
 ^."'^\J;"''^\o^"'^\ 
'
 ij ij
 u 
2.
 M6
 hinh
 tinh
 todn
 : 
Vdi
 nCi
 dung
 cua
 phucmg phip
 big^n
 th^
 nghifim
 dan
 hbi
 da
 dugc 
nCu
 Lrfin
 ,
 klii
 dd m6
 hinli
 tinli todn
 chung
 cho moi
 b^i
 lo^n
 d^n
 deo 
klii
 dp
 dung phirang
 phdp
 nay se
 dugc
 m6
 t^
 trong
 luge
 d6
 dudi
 day
 ; 
21 
Dal
 dau 
m:=\ 
3lrt 
da,j:
 = 0 
k:=0 
m.
 =
 m
 +
 \ 
Luu kft
 qua 
giai doan
 m 
av"" '^:=<-nJa;; 
TInh cac dai lugng : 
m,k-\)
 Sm,k-\) 
m,k-\)
 (m,k
 -I) 
m
 (/ 
0 
k:=k+l 
luih
 :
 41'^, 
'/o-;:=^:'f, 
///•////
 I.l 
22 
3.
 MOt s6
 diem can
 ch(i ^
 khi tinh
 to^n: 
A)
 Do lay difeu
 kien
 cr„ ^
 CT,
 ta
 ap
 dung quy luat deo
 d^
 tfnh
 toan, 
khi
 O'u^^s
 tfl ^P
 dung quy
 luM dan
 hdi,
 nen
 tliay
 rang : 
N^u
 t^^
 la gia
 txi cua tham sd tai
 d^
 tinh toan
 d cudi giai doan 
dan hbl ma
 tai day
 (7^
 sai khac
 <T^
 Vhk Idn thi
 trong
 klioAng ti]r 
t^^
 deh ''crf+i
 dang
 le
 ta
 ap
 dung quy
 luat dan
 hdi
 nliung tilr lan lap 
thit
 2 trd di ta da
 ap
 dung quy
 luat
 deo . Do
 vay
 trong
 each
 chia n 
giai doan
 d^
 tinh
 todn,
 ta
 can chii ^
 d^n
 didm nay vl
 nd
 anli
 hudng 
dfifn
 tdc dd hdi tu
 va
 sai sd kha
 nhifeu. 
B)
 D^
 tinli
 toan,
 ngoai
 van
 d^
 dua
 vfe cac
 dang klidng
 tlii'r
 nguyen cdn 
can chii ^ de^n
 ky thuat
 \\t
 I^
 sd.
 Qiang
 han
 d^
 tinli
 dai lugng x 
trong tlch a.x (
 hihi
 han ), nhung gia tri cua dai lugng a
 la qua 
Idn,
 vugt qua kha nang
 bi^u di^n dau
 phay ddng cua
 may,
 klii
 dd 
c&i
 thay a bdi
 a = va
 khi dd ta se
 tinh
 x -
 (^^
 v
 tliay 
mtx 
cho
 tinh
 x
 (trong
 dd
 Q^^
 la gia tri Idn
 nhat
 cua a trong
 klioang 
dang
 xdt)
 . Vl du
 klii tinh toan
 gap
 cac
 dai lugng :
 G^.ch{m.X) 
vdi
 J:G[0,1]
 va m
 =1,2,3, ,40.
 Dift
 chac rang gia tri cua dai 
lugng
 ^„.c/7(/77.x) Id hiru
 han,
 nimig
 khi
 m=40,
 x=J
 llii
 gia tri 
ch(40)
 la qua
 Idn , khi dd dat :
 ch(m.x)-
 i./^.
 i nen 
^ ^
 c/;(40)
 ^ ) ^ ^-80 ^ 1 ,
 do vay se klidng cdn
 tid 
ngai trong
 van
 d^
 su
 I;^
 sd nira. 
C)
 CSn lap
 ra
 cac
 tep gia tri sd lieu cd san
 d^
 tang tdc dd tinli
 toan
 . 
cac
 tep sd lieu
 nay
 cd
 \hi sir
 dung cho
 nhi^u bai
 toan trong
 tihig 
Idp cac bai
 toan,
 vf du ta cd
 tli^
 tinli
 tap
 cac
 gia tri nghiem cua
 cac 
ham
 Betxen :
 ^i(x),JoWv
 trong klioang [ 0,1 ]
 d^
 giiip
 cho 
viec
 tinh toan
 ddi vdi
 cac bai toan
 cd nghiem chua
 cac ham
 tien. 
23 
CHlTONG
 n 
KHAO
 SAT
 CAC
 TINH
 CHAT CUA PHlTONG
 PIlAl'
 BI£N 
Tfrf
 NGHI$M
 DAN
 HOI
 TRONG MOT SO
 BAI
 TOAN 
PHANG cinu xii PHirc TAP 
• • 
Trong chuang
 nay,
 sijr
 dung phuang phap bie'n
 tli^
 nghiem
 dan
 hdi cua 
If
 th\iy€t
 qua
 trinh bie'n dang
 d^
 giai mdt sd cac
 bai
 toan
 phang. Qua
 cac 
ke^t
 qua
 nhfln
 dugc bang sd, dua ra cac nhan
 x^t
 ve cac tinh
 chat hdi tu , 
tdc dd hdi tu
 va
 su
 dn
 dinh cua phuang phap
 gan
 diing
 nay. 
01
 TRi^G
 IHAI
 DAN
 Dto
 CUA ONG
 DAY
 CIIJU
 AP
 L\X: 
TRONG vA
 LpC
 K£O
 DOC
 TR^TC. 
xet
 dng day, dai,
 ban
 kinli
 trong bang a,
 ban
 kinli
 ngoai bang
 b, 
chiu
 ap
 luc
 d^u
 d trong P(t)
 va
 luc
 k^o
 doc true Q(t). 6ng
 Ihiii
 bang 
vat lieu
 tai
 ben,
 khdng
 nen
 dugc (
 y=
 0,5 ), klidng
 luc
 klidi. 
Ta
 xet
 bai
 toan
 trong he toa do tru. Do
 di^u
 kien ddi
 xinig
 va
 dng 
dai
 vd han
 nen
 cac
 bie^n
 dang
 va
 ung
 suat
 la
 ham
 cua r
 va
 t : 
C^c
 tlianh
 phan
 ihig
 suat,
 bie^n
 dang phai thda man
 cac
 phuang trinh 
va
 cac
 di^u
 kien bien : 
dr ' "^ r