- -
2011.
1
( ) ( )
n
n
f x b a af x b
,a b R
(1).
( ) ( ( ) ) ( ) ( )
n
n
g x af x b g x b af x
(2).
( ) ( )
nn
f x b ag x
(3)
( ) ( )
( ) ( )
n
n
g x b af x
f x b ag x
.
.
.
:
:
3
3
1 2 2 1xx
.
2, 1, ( )a b f x x
.
3
3
y 2x 1 y 1 2x
.
Vy ta có h :
3
3
x 1 2y
y 1 2x
. Tr a h:
3 3 2 2
x y 2(y x) (x y)(x xy y 2) 0 x y
(Do
2 2 2 2
y3
x xy y 2 (x ) y 2 0
24
) Thay vào h ta có:
3 3 2
x 1 2x x 2x 1 0 (x 1)(x x 1) 0
- -
2011.
2
x1
15
x
2
. Vm:
15
x 1;x
2
.
2
3
24
2
x
xx
, , ( )a b f x
.
()fx
.
.
()fx
.
Ta
22
2 4 2( 2 )x x x x
=
2 2 2
2 4 2( 2 1) 2 2( 1) 2x x x x x
.
()fx
= .
()fx
2
(x 1) 2
2(x 1) 2
2
2
1 x 1
(x 1) 1 1
22
.
1
2
, .
t
2
t
y1
x 1 t
t x 1;y 1 1
2
22
y0
.
Ta có h :
2
2
1
t 1 y
2
1
y 1 t
2
ty
1
(t y)(t y ) 0
1
2
yt
2
*
2
2
t
t1
2t t 2 0
ty
2
t0
t y 0
1 17 3 17
tx
44
(tha
x3
).
- -
2011.
3
*
2
2
1t
(t ) 1
4t 2t 3 0
1
22
yt
1
1
2
t
t
2
2
1 13 5 13
tx
44
(th
x3
).
Vm:
3 17 5 13
x ;x
44
.
Gi
2
x x 1000 1 8000x 1000
.
1
x
8000
2
1000 1000 1 8000x x x
.
()fx
.
.
PT
2
4x 4x 4000 4000 4000(2x 1) 3999
2
(2x 1) 4001 4000 4000(2x 1) 4001
()fx
=
2 1, 4000, 4001x a b
).
t
u 2x 1; v 1 8000x
;
4001
v 0,u
4000
, ta có h
22
2 2 2
u 4001 4000v u 4001 4000v
v 4001 4000u u v 4000(v u)
2
u 4001 4000v (1)
(u v)(u v 4000) =0 (2)
. Do
u v 4000 0
nên T (2) ta có:
uv
c:
2
u 4000u 4001 0
u0
- -
2011.
4
u 4001 x 2001
. Vm:
x 2001
.
, , ( )a b f x
.
,ab
do
.
Gi
2
4x 7x 1 2 x 2
.
()fx
a
=2).
22
4 (2 )xx
2
( ) (2 )f x x c
c
.
()fx
o.
2
(2x 1) 3x 2 2(2x 1) 3x
..
t
2
t 2x 1;y 2t 3x y 3x 2t
và
y0
.
Ta có :
2
2
t 3x 2y y t
(t y)(t y 2) 0
y t 2
y 3x 2t
.
*
2
2
4x 3x 1 0
1
t 2t 3x 0
y t x
1
4
t0
x
2
.
*
2
2
4x 11x 7 0
t 3x 2(t 2) 0
y t 2
3
t2
x
2
7
x
4
.
Vm:
71
x ;x
44
.
Gi
22
4x 11x 10 (x 1) 2x 6x 2
.
2
( ) (2 )f x x c
.
- -
2011.
5
c
:
2 2 2 2
2
4 4 ( 11 4 ) 10 ( 1) ( 1)(2 ) ( 11 4 ) 10
(11 4 ) 10 .
x cx c c x c x x x c c x c
b c x c
3c
.
PT
2
(2x 3) x 1 (x 1) (x 1)(2x 3) x 1
t
u 2x 3; v (x 1)(2x 3) x 1
,
Ta có h
2
2
u x 1 (x 1)v
v x 1 (x 1)u
22
u v (x 1)(v u) (u v)(u v x 1) 0
*
2
u v u x 1 (x 1)u
2
(2x 3) x 1 (x 1)(2x 3)
2
2x 6x 7 0
m.
*
2
u v x 1 0 2x 3 2x 6x 2 x 1 0
2
2x 6x 2 4 3x
2
4
x
3
7x 18x 14 0
h vô nghim.
Vm.
3 2 2
3
3 6 3 17 3 9( 3 21 5)x x x x x
.
vn.com.
( ) (3 ) ( )f x x c f x x c
( ) (3 )f x x c
.
PT
3 2 2
3
27 54 27 153 27 9( 3 21 5)x x x x x
. (*)
- -
2011.
6
Tuy nhiên .
.
.
c
b
=
).
b
=
2
81x
.
2
27xc
3c
.
.
3 2 2 2
33
(3 3) (27 126 108 ) 27 9( 3 21 5) 27 27(3 3) (27 126 108 )x x x x x x x x
.
.
2
3
3 3; 27(3 3) (27 126 108 )u x v x x x
.
32
32
(27 126 108 ) 27
(27 126 108 ) 27
u x x v
v x x u
.
3
3 2 2
10 2 7 23 12x x x x x
.
32
( ) ( 2) ; 7 22 10, 1f x x b x x a
.
3
22
3
2; 7 23 12 ( 2) ( 7 22 10)u x v x x x x x
.
32
33
32
22
3
2
22
22
7 22 10
7 22 10
( )( 1) 0
( 2) 7 23 12(*)
3
10
( ) 1 0(**)
24
u x x v
u v v u
v x x u
u v u v uv
x x x
uv
v
u v uv
uv
- -
2011.
7
3 2 2
(*) 5 11 4 0 ( 4)( 3 1) 0
4
35
2
35
2
x x x x x x
x
x
x
3 5 3 5
4; ;
22
x x x
.
.
.
3
2
7 23 12xx
.
4tx
. Thay
3
2
7 23 12 6xx
=
t
, do
4t
2
.
3
2
2 7 23 12t x x
.
3 2 2
32
3 3 2 2 2 2
6 12 7 23 4
10 4
6 6 13 13 0 ( )( 6 6 13) 0
t t t x x
x x x t
t x t x x t t x t x tx t x
.
22
6 6 13 0
tx
t x tx t x
32
3
2
2
22
( 2) 7 23 12(*)
2 7 23 12
3
[( 3) ] 3 4 0(**)
( 3) ( 3) 3 4 0
24
x x x
x x x
x
t x x
t x t x x
- -
2011.
8
3 2 2
(*) 5 11 4 0 ( 4)( 3 1) 0
4
35
2
35
2
x x x x x x
x
x
x
3 5 3 5
4; ;
22
x x x
.
a
""
a
""
B8: Gi
3
22
1
8x 13x 7 (1 ) 3x 2
x
.
.
3
3 2 2
8x 13x 7x (x 1) 3x 2
. (*)
v . v
.
( ) (2 1)f x x
(*)
3 2 2
3
(2x 1) (x x 1) (x 1) (x 1)(2x 1) x x 1
3
2
u 2x 1; v 3x 2
Ta
32
22
32
u (x x 1) (x 1)v
(u v)(u uv v x 1) 0
v (x x 1) (x 1)u
- -
2011.
9
*
3
2 3 2
u v 2x 1 3x 2 8x 15x 6x 1 0
2
x1
(x 1)(8x 7x 1) 0
1
x
8
.
*
2 2 2 2
u3
u uv v x 1 0 (v ) (2x 1) x 1 0
24
22
u
4(v ) 12x 8x 7 0
2
2 2 2
u
4(v ) 4x 2(2x 1) 5 0
2
m.
Vghim:
1
x 1; x
8
.
()fx
""
.
9: Gi
2 2 2
3
7x 13x 8 2x . x(1 3x 3x )
.
. Tuy nhiên .
2
x
.
3
2 3 2
7 13 8 1 3
23
xx
x x x
. (*)
1
t
x
.
3
3 2 2
8t 13t 7t 2 t 3t 3
.
3 2 2
3
(2t 1) (t t 1) 2 2(2t 1) t t 1
.
t
2
3
u 2t 1, v 2(2t 1) t t 1
, ta có h
32
33
32
u t t 1 2v
u v 2v 2u
v t t 1 2u
22
(u v)(u uv v 2) 0
- -
2011.
10
3
2
u v 2t 1 t 3t 3
32
8t 13t 3t 2 0
2
(t 1)(8t 5t 2) 0
2
t1
t1
5 89
t
8t 5t 2 0
16
.
Th li ta thy ba nghim này th
Vm:
16
x 1; x
5 89
.
Tuy n
c
()fx
t
t
.
t
t
x
. .
10:
22
2 2 1 (4 1) 1x x x x
.
.
2 2 2
1 1 1(*)x t x t
.
22
2( 1) 2 1 (4 1) 2 (4 1) 2 1 0t x x t t x t x
. (**)
Xem (**
22
1
2
(4 1) 8(2 1) (4 3)
4 1 4 3 1
1
42
(*)
4 1 4 3
21
4
x x x
xx
t
xx
tx
1
t
do (*).
2
tt
v
2
22
2
2 1 1
2 1, 1 2 1
1 (2 1)
1
4
.
3
3 4 0
x
t x x x
xx
x
x
xx
- -
2011.
11
t
.
x
x
- 1). .
1:
22
3 5 6 2 3x x x x x
.
.
2:
22
2 6 7 5 3 5x x x x
.
2
35t x x
;
0t
.
PT
2
2 5 3 0tt
.
3t
.
2
3 5 3 1 4x x x x
.
t
t
.
3:
22
6 14 98 35 6x x x x
2 2 2
6 35 98 6 14 6 14 .t x x x t t t x
K
2
2
6 14
6 14
x x t
t t x
.
.
t
,xt
.
trên.
. .
: Gi
3
3
8x 4x 1 6x 1
.
.
22
98 35 6 6 14t x x x x
- -
2011.
12
57
x cos ;x cos ;x cos
9 9 9
.
:
3
3
1 3 3 1xx
.
2 4 8
2cos ;2cos ;2cos .
3 3 3
:
2
3
2 4 , 1
2
x
x x x
.
3 17
4
x
7:
2
4 2 2 2x x x
.
5 17
2
x
.
:
2
4 3 1 5 13x x x
.
15 97 11 73
;
88
x
.
:
3
3 2 2 3
2 10 17 8 2 5x x x x x x
3
3 2 2 2
1 4 2 7.
4
x
x x x x x
2
32 32 2 15 20x x x
. (
.
1 9 221
;
2 16
x
.
22
10 6 2(2 1) 2 4x x x x x
:
17 97 17 97
;
12 12
xx
.
22
2 12 6 2 2 4x x x x
- -
2011.
13
-8;-2; 0; 6}
G
2
2
4 3 5
2 2 5
2
xx
xx
.
S= {
5 1 3 5
;
24
}.
3
22
2 6 5 3 3 2x x x x
.
3 5 3 5
;
22
}.
.
2
2011 2011 2011 2011xx
2011 2011 2011
2011 2011
2011
yx
zx
tx
2
2
2
2
2011
2011
2011
2011
xy
yz
zt
tx
Minhduy_k16_THD@yahoo. com.