Tải bản đầy đủ (.docx) (23 trang)

KIỂM ÐỊNH GIẢ THUYẾT TRONG THỐNG KÊ KẾ TOÁN

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (377.19 KB, 23 trang )

KIỂM ÐỊNH GIẢ THUYẾT
(Hypothesis Testing)

I. KH ÁI NIỆM
II. QUY TRÌNH TỔNG QUÁT TRONG KIỂM ĐỊNH GIẢ THUYẾT
III. CÁC LOẠI GIẢ THUYẾT TRONG THỐNG KÊ
1. Giả thuyết H0 : (The null hypothesis)
2. Giả thuyết H1 : (The Alternative Hypothesis)
IV. CÁC LOẠI SAI LẦM TRONG KIỂM ĐỊNH GIẢ THUYẾT
1. Sai lầm loại I
2. Sai lầm loại II
V. KIỂM ĐỊNH TRUNG BÌNH TỔNG THỂ
1. Kiểm định trung bình tổng thể với giả định tổng thể có phân phối
chuẩn và phương sai tổng thể được biết trước
2. Kiểm định giả thuyết của trung bình tổng thể khi chưa biết
phương sai
VI. KIỂM ĐỊNH TỈ LỆ P TRONG TỔNG THỂ VỚI MẪU LỚN
VII. KIỂM ĐỊNH PHƯƠNG SAI CỦA MỘT PHÂN PHỐI CHUẨN
VIII. KIỂM ĐỊNH SỰ KHÁC NHAU CỦA HAI TRUNG BÌNH TRONG
HAI TỔNG THỂ
1. Kiểm định dựa trên phối hợp từng cặp
2. Kiểm định dựa trên mẩu độc lập
IX. KIỂM ĐỊNH SỰ KHÁC BIỆT CỦA HAI TỈ LỆ TỔNG THỂ
1. Trường hợp 1: Chênh lệch hai tỉ lệ tổng thể bằng 0
2. Trường hợp 2: Chênh lệch hai tỉ lệ tổng thể bằng D
BÀI TẬP

I. KHÁI NIỆM
Khi một mẫu được chọn ra từ một tổng thể, các thông tin của mẫu có thể
nói lên đặc điểm của tổng thể đó hoặc cũng có thể dùng để đánh giá sự phỏng đoán
hoặc một giả thuyết đã được giả định.


Ví dụ:
1. Một nhà sản xuất kẹo cho rằng trung bình mỗi hộp (0,5kg) có khoảng 82
viên kẹo. Ðể kiểm tra điều này, ngẫu nhiên những hộp kẹo được chọn ra để
kiểm tra, đếm và tính toán.
2. Một nhà sản xuất nước giải khát muốn kiểm tra giả định về tỉ lệ lượng tạp
chất có trong thành phẩm nhiều nhất là 0,5%. Ngẫu nhiên những chai và lon
nước giải khát được chọn ra để kiểm tra một cách cẩn thận về tỉ lệ tạp chất này.
3. Một quản trị Marketing muốn kiểm tra giả định doanh thu của công ty
tăng trung bình ít nhất 5% sau đợt quảng cáo. Ông ta kiểm tra giả định bằng
cách liệt kê doanh thu trước và sau chiến dịch quảng cáo để tính toán.
4. Một đài phát thanh truyền hình muốn biết những chương trình Tivi có
thỏa mãn cho cả quí ông và quí bà hay không. Ðể kiểm tra điều này, ông ta lấy
ý kiến của nam và nữ một cách ngẫu nhiên trong khu vực phát hình của mình,
xử lý thông tin và cho kết luận.
II. QUI TRÌNH TỔNG QUÁT TRONG KIỂM ĐỊNH GIẢ THUYẾT
1. Chọn lọai kiểm định: Tùy theo mục đích nghiên cứu có nhiều loại kiểm định
khác nhau như:
a. Những kiểm định đơn giản về trung bình tổng thể (µ) phương sai tổng thể
(s
2
), hoặc tỉ lệ tổng thể (p).
b. Kiểm định sự khác sai về trung bình (m) phương sai (s
2
), hoặc tỉ lệ (p) của
hai tổng thể hay nhiều tổng thể.
c. Kiểm định của một tổ hợp của những biến độc lập và những biến phụ thuộc
của các nhân tố ảnh hưởng đến các vấn đề nghiên cứu.
2. Mục đích của kiểm định.
3. Ðặt giả thuyết H0 và H1: dạng một đuôi hoặc hai đuôi.
4. Ðặt giả thuyết cho cỡ mẫu, tổng thể, dạng phân phối chuẩn hay phân phối bất

kỳ, mẫu ngẫu nhiên độc lập hay mẫu ngẫu nhiên phân tầng.
5. Tính toán biến ngẫu nhiên của kiểm định như biến Z (trong phân phối chuẩn),
t (trong phân phối Student t) hay c
2
(trong phân phối Chi bình phương).
6. Quyết định bác bỏ hay chấp nhận giả thuyết H0 thông qua việc so sánh giữa giá
trị kiểm định tính toán được và giá trị tra bảng.
7. Giải thích và kết luận về vấn đề được giả định.
Qui trình tổng quát trong kiểm định giả thuyết sẽ được chi tiết trong các ví
dụ phần sau của chương này. Sau đây là một số cơ sở để ước lượng và suy luận:
· Dùng trung bình mẫu hoặc số trung vị để ước lượng trung bình
tổng thể (µ)
· Dùng phương sai mẫu (S
2
) để ước lượng phương sai tổng thể (s
2
).
· Dùng độ lệch chuẩn (S) để ước lượng độ lệch chuẩn tổng thể (s).
· Dùng tỉ lệ mẫu để ước lượng tỉ lệ tổng thể p.

III. CÁC LOẠI GIẢ THUYẾT TRONG THỐNG KÊ
1. Giả thuyết H0 : (The null hypothesis)

Để dễ hiểu, q được ký hiệu cho các tham số của tổng thể như số trung
bình (m), phương sai (s
2
), phương hoặc tỉ lệ (p). Vậy giả thuyết H
0
là tham số q của
tổng thể thì bằng với giá trị q

0
cụ thể nào đó trong trường hợp giả thuyết có giá trị
đơn, nghĩa làì H
0
: q = q
0
(kiểm định hai đuôi), hoặc giả thuyết là một dãy của giá
trị, lúc đó H
0
: q ³ q
0
hay H
0
: q £ q
0
(kiểm định một đuôi)

2. Giả thuyết H1 : (The Alternative Hypothesis)

Giả thuyết H1 là kết quả ngược lại của giả thuyết H0, nếu giả thuyết H0 đúng
thì giả thuyết H1 sai và ngược lại. Vậy cặp giả thuyết H0 và H1 được thể hiện
trong các trường hợp kiểm định như sau:
+ Trong trường hợp kiểm định dạng hai đuôi (Two-tail test):

+ Trong trường hợp kiểm định dạng một đuôi (One- tail test):

hoặc


Ví dụ: Trở lại các ví dụ ở phần I. Trang 122, ta có các cặp giả thuyết H0 và H1

như sau:


IV. CÁC LOẠI SAI LẦM TRONG KIỂM ĐỊNH GIẢ THUYẾT


Là sai lầm của việc bác bỏ giả thuyết H0 khi giả thuyết này đúng ở mức ý
nghĩa nào đó của kiểm định, nghĩa là nếu quyết định xác suất bác bỏ giả thuyết H0
khi giả thuyết này đúng là thì xác suất để chấp nhận nó là (1- ).


Ngược lại sai lầm loại I là sai lầm loại II là loại sai lầm của việc chấp nhận giả
thuyết H0 khi giả thuyết này sai. Nếu xác suất của việc quyết định chấp nhận một
giả thuyết H0 sai được ký hiệu là b thì xác suất để bác bỏ giả thuyết này là (1-b).

Những quyết định dựa trên giả thuyết H0 được tóm tắt như sau:

Ví dụ: trở lại ví dụ 2 (trang 118) về lượng tạp chất có trong thành phẩm ta xét:
· Sai lầm lọai I:
- Giả thuyết H0: Lượng tạp chất nhiều nhất là 0,5%.
- Thực chất lượng tạp chất nhiều nhất là 0,5%, có nghĩa là giả thuyết H0
đúng. Nhưng qua kiểm định ta lại bác bỏ giả thuyết này, vậy ta đã mắc phải sai lầm
lọai I: bác bỏ một giả thuyết đúng. Ðiều này cho ta một kết luận rằng tỉ lệ tạp chất
có trong nước giải khát ít nhất là 0,5%, quá tỉ lệ tạp chất cho phép, điều này sẽ gây
ảnh hưởng không tốt đến người tiêu dùng.
· Sai lầm lọai II:
- Giả thuyết H0: Lượng tạp chất nhiều nhất là 0,5%.
- Thực chất lượng tạp chất có trong nước giải khát ít nhất là 0,5%, có nghĩa
là giả thuyết H0 sai. Nhưng qua kiểm định ta lại chấp nhận giả thuyết này, vậy ta
đã mắc phải sai lầm lọai II: chấp nhận một giả thuyết sai. Ðiều này cho ta kết luận

rằng tỉ lệ tạp chất có trong nước giải khát nhiều nhất là 0,5%.
V. KIỂM ĐỊNH TRUNG BÌNH TỔNG THỂ
1. Kiểm định trung bình tổng thể (µ) với giả định tổng thể có phân phối chuẩn, và
phương sai tổng thể (s
2
) được biết trước.

1.1 Trường hợp mẫu nhỏ: n < 30
Chúng ta bắt đầu với việc kiểm định giả thuyết đơn giản rằng trung bình tổng
thể (µ) thì bằng một giá trị cụ thể nào đó. Giả sử rằng chúng ta có một mẫu
ngẫu nhiên có n phần tử được chọn ra từ một tổng thể có phân phối chuẩn với
trung bình (µ) và phương sai (s
2
). Nếu trung bình của mẫu n phần tử là và kiểm
định ở mức ý nghĩa a. Ta có các giả thuyết được ví dụ như sau:
1. Đặt giả thuyết:





4. Kết luận: sau khi kiểm định ta kết luận thực chất của vấn đề suy ra từ thông
tin mẫu cho tổng thể.
Ví dụ 1: Một qui trình sản xuất quả bóng bàn nếu sản xuất trong một dây chuyền
chính xác thì trọng lượng của các quả bóng có phân phối chuẩn với Ġ = 5g và độ
lệch chuẩn ( = 0,1g. Một quản đốc nhà máy nhận định rằng có một sự tăng lên về
trọng lượng trung bình của các quả bóng được sản xuất ra, với độ lệch chuẩn
không thay đổi. Một mẫu ngẫu nhiên gồm 16 quả bóng đã được chọn để kiểm tra
với trung bình g. Kiểm định giả thiết H
o

cho rằng trung bình toàn bộ các
bóng bàn được sản xuất ra của nhà máy có trọng lượng tối đa là 5g ở mức ý nghĩa
5% và 10%.


Ta có:

· Trường hợp 1:

· Trường hợp 1:

4. Kết luận:
· Trường hợp 1: Với mức ý nghĩa 5%, số liệu của mẫu quan sát không đủ bằng
chứng để bác bỏ giả thuyết H0, nghĩa là trọng lượng trung bình của các quả bóng
trong tổng thể tối đa là 5g.
· Trường hợp 2: ở mức ý nghĩa 10% giả thuyết H0 bị bác bỏ, nghĩa là số liệu của
mẫu quan sát đủ để cho ta kết luận rằng trọng lượng thực tế trung bình tổng thể các
quả bóng trên 5g.
Như vậy, có một vấn đề xuất hiện ở đây rằng ở mức ý nghĩa nào của ( giữa
5% và 10% thì giả thuyết H0 bị bác bỏ, giá trị ở tại mức ( đó được gọi là giá trị p
(p value: probability value).

Trở lại ví dụ trên, Z
a
trong kiểm định bằng 1,52. Như vậy giả thuyết H
0
bị
bác bỏ ở bất cứ giá trị nào của a mà ở đóï Z
a
nhỏ hơn 1,52. Cụ thể, tìm giá trị p

trong trường hợp như sau:
Z
a
= 1,52
Tra bảng ta có:
P( Z
1,52
) = 0,4357
=> a = 0,5 - P (Z
1,52
) = 0,5 - 0,4357 = 0, 0643
Hay a = 6,43%
Điều này cho ta suy luận rằng giả thiết H
0
có thể bị bác bỏ ở bất kỳ giá trị a nào lớn
hơn 6,43%, bởi vì khi a > 6,43% thì Z
a
= 1,52 nằm trong vùng bác bỏ giả thuyết
(tham khảo sơ đồ dưới đây)

Tóm tắt các trường hợp tổng quát cho hai dạng kiểm định hai đuôi và một đuôi:










Ví dụ 2: Một máy khoan lỗ trên tấm kim loại, đường kính của những lỗ khoan có
phân phối chuẩn với µ = 2cm và có độ lệch chuẩn là 0,06cm. Ðể kiểm tra tính chất
chính xác của máy khoan, đường kính của các lỗ khoan ngẫu nhiên được chọn ra
để đo. Giả sử độ lệch chuẩn không thay đổi, một mẫu gồm 9 số đo với đường kính
trung bìnhĠ = 1,95cm. Hãy kiểm định giả thuyết H0 rằng trung bình tổng thể (µ) là
2cm ở mức ý nghĩa 5%, và tìm giá trị p của kiểm định?
1. Giả thiết:

2. Kiểm định:

3. Quyết định: Giá trị tra bảng

Ta có:

Vì vậy, ta bác bỏ giả thuyết H0 ở mức ý nghĩa 5%, nghĩa là trung bình đường kính
của các lỗ khoan có thể trên dưới 2cm.
Ở đây chúng ta cũng có thể tìm giá trị p để xem giả thuyết H0 bị bác bỏ tại mức ý
nghĩa nhỏ nhất là bao nhiêu?
Ta có:

4. Kết luận: Giả thuyết H
0
có thể bị bác bỏ dựa vào kiểm định "hai đuôi" ở bất cứ
giá trị nào của a lớn hơn 1,24%. Điều này cũng cho ta nghi ngờ về tính chính xác
của máy khoan về đường kính của lỗ khoan là khoản 2cm.
1.2 Trường hợp mẫu lớn: n > 30
Các bước thực hiện giống như trường hợp mẫu nhỏ nhưng thay phương sai
chung (s
2
) bằng phương sai mẫu trong phần tính toán kiểm định.

Giá trị kiểm định:

2. Kiểm định giả thuyết của trung bình tổng thể khi chưa biết phương sai (s
2
)
Giả sử chúng ta có một mẫu ngẫu nhiên gồm n phần tử từ một tổng thể có
phân phối chuẩn với trung bình µ . thể có Nếu trung bình và độ lệch chuẩn của
mẫu lần lượt là và S
x
, và kiểm định ở mức ý nghĩa a thì ba dạng tổng quát của
kiểm định như sau:
1. Giả thiết:

2. Kiểm định:



Kiểm định giả thuyết của tổng thể trung bình tổng thể khi chưa biết
phương sai (s
2
) , ta dùng biến ngẫu nhiên t với (1-n) độ tự do thay cho biến ngẫu
nhiên Z trong phân tích giá trị kiểm định.

Ví dụ: Tổng giám đốc công ty kinh doanh khách sạn du lịch của thành phố Y biết
rằng doanh thu trung bình của các khách sạn tháng 12 tăng lên 20% so với tháng
11. Sáu khách sạn ngẫu nhiên được chọn ra và ghi nhận doanh thu tăng lên như sau
(%):
19,2 18,4 19,8 20,2 20,4 19,0
Giả sử phân phối của tổng thể là phân phối chuẩn, hãy kiểm định giả
thuyết H

0
rằng tốc độ tăng trung bình của doanh thu công ty là 20% dựa vào kiểm
định "hai đuôi" ở mức ý nghĩa 10%.
1. Giả thuyết

2. Giá trị kiểm định:

với


Vậy:



Ta thấy t = -1,597 nằm giữa -2,015 và + 2,015 trong vùng chấp nhận H
0
.
4. Kết luận: Tốc độ tăng doanh thu trung bình của khách sạn bằng 20% là sự thật
ở mức ý nghĩa 10%.
VI. KIỂM ĐỊNH TỈ LỆ P TRONG TỔNG THỂ VỚI MẪU LỚN (n>40)
Trong nhiều vấn đề thực tế, chúng ta muốn kiểm định giả thuyết về tỉ lệ của
các phần tử trong một tổng thể lớn. Ở đây chúng ta suy luận vấn đề cho tổng thể
dựa vào tỉ lệ của đơn vị trong mẫu ngẫu nhiên với mức ý nghĩa a.
Nếu ký hiệu:

Có 3 trường hợp tổng quát trong kiểm định được diễn giải dưới đây:
1. Giả thiết:

2. Kiểm định:



Ví dụ: Một mẫu ngẫu nhiên gồm 199 nhà đầu tư trong một thành phố lớn, 104
trong số họ đồng ý với câu nói rằng: "lưu lượng tiền mặt trong hoạt động kinh
doanh là một số đo có giá trị của khả năng sinh lời". Hãy kiểm định giả thuyết ở
mức ý nghĩa 10% dựa vào kiểm định "hai đuôi" rằng phân nửa số nhà đầu tư (50%)
sẽ đồng ý với câu nói trên.
1. Giả thiết:

2. Kiểm định:



4. Kết luận: Những số liệu trên không đủ bằng chứng để bác bỏ giả thuyết H0
cho rằng 50% các nhà đầu tư trong công ty đồng ý rằng lưu lượng tiền mặt trong
hoạt động kinh doanh là một số đo có giá trị của khả năng sinh lời.
VII. KIỂM ĐỊNH PHƯƠNG SAI CỦA MỘT PHÂN PHỐI CHUẨN
Giả sử rằng chúng ta có một ngẫu nhiên với n phần tử được quan sát từ một
tổng thể có phân phối chuẩn với phương sai s
2
. Nếu phương sai mẫu là , s
o
là một
giá trị cụ thể nào đó của phương sai cần kiểm định và kiểm định ở mức ý
nghĩa a ta có:




Ví dụ, Ðể đạt được tiêu chuẩn đã được đặt ra cho mức độ tạp chất trong sản
phẩm chất hóa học là không vượt quá 4%. Một mẫu ngẫu nhiên gồm 20 sản phẩm

có phương sai mẫu 5,62 trong phần trăm mức độ của tạpchất. Hãy kiểm định giả
thuyết H0 ở mức ý nghĩa 10% rằng phương sai chung của tổng thể không vượt quá
4%.
1. Giả thuyết:

2. Kiểm định:



4. Kết luận: ở mức ý nghĩa 10%, số liệu không đủ bằng chứng để bát bỏ giả
thuyết cho rằng phương sai chung của phần trăm mức độ phức tạp chất tối đa là 4.
VIII. KIỂM ĐỊNH SỰ KHÁC NHAU CỦA HAI TRUNG BÌNH TRONG
HAI TỔNG THỂ
1. Kiểm định dựa trên phối hợp từng cặp (Matched pairs):
Giả sử rằng chúng ta có một mẫu ngẫu nhiên gồm n cặp quan sát từ những phân
phối của hai tổng thể có trung bình lần lượt là và . Đặt và là trung bình
và độ lệch chuẩn cho sự khác nhau của n cặp . Nếu tổng thể của sự khác
nhau này có phân phối chuẩn, là một giá trị cụ thể nào đó để kiểm định và kiểm
định ở mức ý nghĩa ta có ba trường hợp kiểm định tổng quát như sau:

Ví dụ: Có một nghiên cứu nhằm mục đích kiểm tra sự gợi nhớ nội dung quảng cáo
của các sản phẩm khi xem tivi trong 24 giờ. Công ty đưa ra 2 loại nhãn hiệu quảng
cáo cho 10 sản phẩm khác nhau. Tài liệu thu nhập sau đây là lượng người sau khi
phỏng vấn nhớ hai lọai nhãn hiệu khi xem Tivi:
Sản
phẩm
Loại 1 Loại 2 Chênh lệch
(i) (x
i
) (y

i
) di d
i
2
1 137 53 84 7.056
2 135 114 21 441
3 83 81 2 4
4 125 86 39 1.521
5 47 34 13 169
6 46 66 -20 400
7 114 89 25 625
8 157 113 44 1.936
9 57 88 -31 961
10 144 111 33 1.089
Tổng cộng: 210 14.202
Giả sử phân phối tổng thể của các chênh lệch này có phân phối chuẩn. Hãy
kiểm định giả thuyết rằng không có sự khác biệt giữa trung bình của hai lọai nhãn
hiệu (D0 = 0) của người xem ở mức ý nghĩa 5% và 2,5%.


4. Kết luận: Như vậy giả thuyết H0 rằng có sự bằng nhau của hai trung bình tổng
thể về sự gợi nhớ nhãn hiệu sản phẩm bị bác bỏ ở mức ý nghĩa 5% nhưng được
chấp nhận ở mức ý nghĩa 2,5% mặc dù số liệu trong bảng trên cho thấy rằng trung
bình nhãn hiệu loại 1 cao hơn.
2. Kiểm định dựa trên mẫu độc lập:
Giả sử chúng ta có một mẫu ngẫu nhiên gồm n
x
quan sát từ một tổng thể có phân
phối trung bình m
x

và phương sai , và một mẫu ngẫu nhiên khác gồm n
y
quan
sát từ một tổng thể cũng có phân phối chuẩn với trung bình m
y
và phương sai
. Trường hợp số quan sát mẫu lớn ta có thể thay thế phương sai tổng thể bằng
phương sai mẫu. Nếu lần lượt là trung bình mẫu của hai tổng thể x và
y; D
0
là một giá trị nào đó trong kiểm định ở mức ý nghĩa ta có ba trường hợp kiểm
định tổng quát như sau:

Ví dụ: Một cuộc điều tra trong thực tế các kế toán viên về chuyên môn kế toán
được thực hiện trong hoạt động kinh doanh ở các công ty. Các ứng viên trả lời
đánh dấu điểm số từ 1 (hoàn toàn không đồng ý) đến 5 (hoàn toàn đồng ý) với câu
nói sau đây: Phụ nữ có nghiệp vụ kế toán thì có nhiệm vụ và vị trí trong công việc
như nam giới. Một mẫu ngẫu nhiên gồm 186 nam kế toán trong thang điểm trả lời
có trung bình là 4,059 và độ chênh lệch chuẩn 0,839. Một mẫu ngẫu nhiên khác
gồm 172 nữ kế toán có trung bình cho thang điểm trả lời là 3,680 và độ lệch chuẩn
0,996. Hãy kiểm định giả thuyết H0 cho trung bình hai tổng thể thì bằng nhau trên
cơ sở giả thuyết H1 rằng trung bình thì cao hơn cho các nam kế toán viên.
Âàût m
x
vaì m
y
lần lượt là trung bình tổng thể cho nam và nữ kế toán viên.Ta có:


IX. KIỂM ĐỊNH SỰ KHÁC BIỆT CỦA HAI TỈ LỆ TỔNG THỂ (trường hợp mẫu lớn

độc lập)

1. Trường hợp 1: Chênh lệch hai tỉ lệ tổng thể bằng 0

2. Trường hợp 2: Chênh lệch hai tỉ lệ tổng thể bằng D


Ví dụ: Thông tin từ một bài báo cho biết rằng thị phần cho vay của một số ngân
hàng đối với các hãng xe hơi đang bị giảm sút. Bài báo viết rằng năm 1990 các
ngân hàng cho vay đến các hãng này khoảng 53% nhưng đến năm 1996 chỉ còn
43%. Giả sử rằng ngẫu nhiên trong 100 lần vay của các hãng xe hơi có 53 lần vay
từ ngân hàng vào năm 1990 và 43 lần vào năm 1996. Hãy kiểm định hai đuôi sự
bằng nhau của hai tỷ lệ tổng thể về việc vay của các hãng xe hơi tại các ngân hàng
năm 1990 và năm 1996 ở mức ý nghĩa 10%.

Tra bảng phân phối chuẩn ta cóï Z
a/2
= Z
5%
= 1,645. Như vậy, giá trị kiểm định rơi
vào vùng chấp nhận giả thuyết H
0
, có nghĩa là tài liệu không đủ cơ sở để nói lên
rằng thị phần cho vay của các ngân hàng đến các hãng xe là thay đổi giữa hai năm
nàm 1990 và1996.
BÀI TẬP
1. Một nhà sản xuất thuốc tây đang quan tâm đến lượng chất bẩn lẫn trong thuốc
viên và mong muốn điều này không được vượt quá 3%. Trong dây chuyền sản xuất
hoàn chỉnh sự tập trung của tạp chất theo sau một phân phối chuẩn có độ lệch
chuẩn 0,4%. Một mẫu ngẫu nhiên 64 viên thuốc được lấy ra để kiểm tra và thấy

rằng trung bình tỉ lệ lượng chất bẩn là 3,07%.
a. Kiểm định giả thuyết H0 cho rằng trung bình tổng thể của lượng tạp chất
là 3% với đối thuyết H1 cho chỉ tiêu này lớn hơn 3% ở mức ý nghĩa 5% ?
b. Tìm giá trị P của kiểm định ?
c. Không cần tính toán, nếu kiểm định dạng 2 đuôi thì giá trị P lớn hơn, nhỏ
hơn hay bằng với giá trị P ở câu b ?
d. Tại sao trong bài tập này kiểm định dạng 1 đuôi thì phù hợp hơn?

2. Một nhà sản xuất mô tô muốn cải tiến một số phụ tùng để bảo đảm tiết kiệm
xăng khi mô tô hoạt động. Các mô tô nên đạt mức tiết kiệm rằng cứ một lít xăng so
với ban đầu xe chạy thêm ít nhất được 3 km. 100 xe mô tô được chọn ra để đánh
giá thì thấy rằng trung bình 1 lít xăng xe chỉ chạy thêm được 2,4 km và độ lệch
chuẩn là 1,8. Hãy kiểm định giả thuyết H0 ở mức ý nghĩa 5% cho trung bình tổng
thể rằng cứ 1 lít xăng xe chạy thêm ít nhất 3 km ở mức ý nghĩa 5% và tìm giá trị P
của kiểm định ?
3. Một qui trình sản xuất dầu gội đầu, khi dây chuyền sản xuất hoạt động hoàn
chỉnh thì mỗi kiện sản xuất ra có trọng lượng trung bình là 20 kg. Một mẫu ngẫu
nhiên gồm 9 kiện được chọn ra để cân có trọng lượng như sau (kg).
21,4 19,7 19,7 20,6 20,8 20,1 19,7 20,3 20,9
Giả sử rằng phân phối của tổng thể là phân phối chuẩn, hãy kiểm định giả thuyết ở
mức ý nghĩa 5% dựa vào dạng kiểm định 2 đuôi với giả thuyết H0 cho rằng quá
trình sản xuất thì hoạt động một cách chính xác?

4. Một nhà phân phối bia trong một thành phố khẳng định rằng: bằng cách quảng
cáo và cách tiếp cận khách hàng mới ở các cửa hàng, mỗi tuần trong các cửa hàng
bán trung bình tăng thêm 50 kết bia. Một mẫu ngẫu nhiên gồm 20 cửa hàng được
chọn ra để xác định lời khẳng định trên thì thấy trung bình mỗi cửa hàng chỉ bán
được 41,3 kết bia và độ lệch chuẩn là 12,2. Hãy đặt giả sử để kiểm định giả thuyết
cho rằng mỗi tuần bán thêm được 50 kết ở mỗi cửa hàng ở mức ý nghĩa 5% .


5. Trong 361 chủ nhân của cửa hàng bán lẻ và các công ty đã thành công trong
kinh doanh thì có 105 người nói rằng một trong những nguyên nhân dẫn đến thành
công là do có tư vấn về chuyên môn khi mở doanh nghiệp. Hãy kiểm định rằng có
25% thành viên của tổng thể đã thành công trong kinh doanh là do có tư vấn khi
mở doanh nghiệp.

6. Một mẫu ngẫu nhiên gồm 998 thanh niên trong thành phố X, trong đó 17,3%
thành viên không đồng ý với câu nói: Quảng cáo sản phẩm trên ti vi có ảnh hưởng
đến người tiêu dùng tốt hơn các phương tiện khác. Hãy kiểm định ở mức ý nghĩa
5% giả thuyết H0 rằng có ít nhất 25% thanh niên thành phố X không đồng ý với
câu nói trên.

7. Có một cuộc điều tra nghiên cứu để đánh giá tiền lương khởi điểm mỗi tháng
của sinh viên nam và sinh viên nữ sau khi tốt nghiệp. Những người nghiên cứu
chọn ngẫu nhiên 8 cặp sinh viên đã nhận được việc làm ở 8 công ty khác nhau
(nhưng cùng loại doanh nghiệp). Ở đây chúng ta giả định rằng khả năng, trình độ
của các sinh viên này thì không khác nhau mà điểm khác nhau cơ bản là giới tính.
Mỗi cặp là một nam và một nữ, và phân phối của tổng thể là phân phôiú chuẩn.
Hãy kiểm định giả thuyết H0 cho rằng trung bình tiền lương khởi điểm của sinh
viên nam và sinh viên nữ thì bằng nhau với đối thuyết H1 là tiền lương của sinh
viên nam cao hơn ở mức ý nghĩa 5%?
đvt: 1000 đồng
Tiền lương khởi điểm
Cặp sinh
viên
Nam Nữ
1 524 452
2 494 472
3 568 586
4 434 446

5 472 524
6 586 518
7 566 570
8 486 426
8. Ðể đánh giá hiệu quả của việc khích lệ sự trả lời bằng thư của khách hàng trong
một nghiên cứu tìm hiểu thị hiếu tiêu dùng sản phẩm. Công ty dùng cả hai hình
thức, gởi bảng câu hỏi kèm quà khích lệ và không kèm quà.
· Trường hợp 1: Gởi 432 bảng câu hỏi kèm quà thì tỷ lệ thất thoát là 9,1% (tỷ
lệ mà công ty không nhận lại bảng câu hỏi từ khách hàng).
· Trường hợp 2: Gởi 431 bảng câu hỏi không kèm quà thì tỷ lệ thất thóat là
10,4%.
Hãy kiểm định giả thuyết H0 rằng hai tỷ lệ trên của hai tổng thể thì bằng nhau với
đối thuyết H1 cho rằng tỷ lệ này sẽ lớn hơn trong trường hợp không có quà kèm
theo bảng câu hỏi.

9. Một mẫu ngẫu nhiên gồm 160 nhà doanh nghiệp, trong đó 62 người đồng ý với
câu nói: Một sự nổi tiếng trong cách cư xử và lối sống có đạo đức thì ít quan trọng
trong cơ hội được thăng chức của các quản đốc và trưởng phó phòng hơn là sự nổi
tiếng về việc kiếm ra tiền cho công ty. Hãy kiểm định giả thuyết H0 cho rằng phân
nữa trong tất cả nhà doanh nghiệp đồng ý với câu nói trên dựa vào kiểm định dạng
2 đuôi.

×