1
What is MPI?
MPI = Message Passing Interface
Specification of message passing libraries for
developers and users
Not a library by itself, but specifies what such a library
should be
Specifies application programming interface (API) for
such libraries
Many libraries implement such APIs on different
platforms – MPI libraries
Goal: provide a standard for writing message
passing programs
Portable, efficient, flexible
Language binding: C, C++, FORTRAN programs
2
History & Evolution
1980s – 1990s: incompatible
libraries and software tools; need
for a standard
1994, MPI 1.0;
1995, MPI 1.1, revision and
clarification to MPI 1.0
Major milestone
C, FORTRAN
Fully implemented in all MPI
libraries
1997, MPI 1.2
Corrections and clarifications to
MPI 1.1
1997, MPI 2
Major extension (and clarifications)
to MPI 1.1
C++, C, FORTRAN
Partially implemented in most
libraries; a few full implementations
(e.g. ANL MPICH2)
MPI Evolution
3
Why Use MPI?
Standardization: de facto standard for parallel
computing
Not an IEEE or ISO standard, but “industry standard”
Practically replaced all previous message passing
libraries
Portability: supported on virtually all HPC
platforms
No need to modify source code when migrating to
different machines
Performance: so far the best; high performance
and high scalability
Rich functionality:
MPI 1.1 – 125 functions
MPI 2 – 152 functions.
If you know 6 MPI functions,
you can do almost everything
in parallel.
4
Programming Model
Message passing model: data exchange through explicit
communications.
For distributed memory, as well as shared-memory
parallel machines
User has full control (data partition, distribution): needs
to identify parallelism and implement parallel algorithms
using MPI function calls.
Number of CPUs in computation is static
New tasks cannot be dynamically spawned during run time (MPI
1.1)
MPI 2 specifies dynamic process creation and management, but
not available in most implementations.
Not necessarily a disadvantage
General assumption: one-to-one mapping of MPI
processes to processors (although not necessarily
always true).
5
MPI 1.1 Overview
Point to point communications
Collective communications
Process groups and communicators
Process topologies
MPI environment management
6
MPI 2 Overview
Dynamic process creation and management
One-sided communications
MPI Input/Output (Parallel I/O)
Extended collective communications
C++ binding
7
MPI Resources
MPI Standard:
/>
MPI web sites/tutorials etc, see class web site
Public domain (free) MPI implementations
MPICH and MPICH2 (from ANL)
LAM MPI
8
General MPI Program Structure
9
Example
#include <mpi.h>
#include <stdio.h>
int main(int argc, char **argv)
{
int my_rank, num_cpus;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Comm_size(MPI_COMM_WORLD, &num_cpus);
printf(“Hello, I am process %d among %d processes\n”,
my_rank, num_cpus);
MPI_Finalize();
return 0;
}
Hello, I am process 1 among 4 processes
Hello, I am process 2 among 4 processes
Hello, I am process 0 among 4 processes
Hello, I am process 3 among 4 processes
On 4 processors:
10
Example
program hello
implicit none
include ‘mpif.h’
integer :: ierr, my_rank, num_cpus
call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, my_rank)
call MPI_COMM_SIZE(MPI_COMM_WORLD, num_cpus)
write(*,*) “Hello, I am process “, my_rank, “ among “ &
, num_cpus, “ processes”
call MPI_FINALIZE(ierr)
end program hello
Hello, I am process 1 among 4 processes
Hello, I am process 2 among 4 processes
Hello, I am process 0 among 4 processes
Hello, I am process 3 among 4 processes
On 4 processors:
11
MPI Header Files
In C/C++:
In FORTRAN:
#include <mpi.h>
include ‘mpif.h’
or (in FORTRAN90 and later)
use MPI
12
MPI Naming Conventions
All names have MPI_ prefix.
In FORTRAN:
All subroutine names upper case, last argument is return code
A few functions without return code
In C: mixed uppercase/lowercase
MPI constants all uppercase
call MPI_XXXX(arg1,arg2,…,ierr)
call MPI_XXXX_XXXX(arg1,arg2,…,ierr)
ierr = MPI_Xxxx(arg1,arg2,…);
ierr = MPI_Xxxx_xxx(arg1,arg2,…);
MPI_COMM_WORLD, MPI_SUCCESS, MPI_DOUBLE, MPI_SUM, …
If ierr == MPI_SUCCESS,
Everything is ok; otherwise,
something is wrong.
13
Initialization
Initialization: MPI_Init() initializes MPI environment;
(MPI_Init_thread() if multiple threads)
Must be called before any other MPI routine (so put it at the
beginning of code) except MPI_Initialized() routine.
Can be called only once; subsequent calls are erroneous.
MPI_Initialized() to check if MPI_Init() is called
int main(int argc, char ** argv)
{
MPI_Init(&argc, &argv);
int flag;
MPI_Initialized(&flag);
if(flag != 0) … // MPI_Init called
… …
MPI_Finalize();
return 0;
}
int MPI_Init(int *argc, char ***argv)
program test
integer ierr
call MPI_INIT(ierr)
…
call MPI_FINALIZE(ierr)
end program test
MPI_INIT(ierr)
14
Termination
MPI_Finalize() cleans up MPI environment
Must be called before exits.
No other MPI routine can be called after this call,
even MPI_INIT()
Exception: MPI_Initialized() (and
MPI_Get_version(), MPI_Finalized()).
Abnormal termination: MPI_Abort()
Makes a best attempt to abort all tasks
int MPI_Finalize(void)
MPI_FINALIZE(IERR)
integer IERR
int MPI_Abort(MPI_Comm comm, int errorcode)
MPI_ABORT(COMM,ERRORCODE,IERR)
integer COMM, ERRORCODE, IERR
15
MPI Processes
MPI is process-oriented: program consists of multiple
processes, each corresponding to one processor.
MIMD: Each process runs its own code. In practice, runs
its own copy of the same code (SPMD).
MPI process and threads: MPI process can contain a
single thread (common case) or multiple threads.
Most MPI implementations do not support multiple threads.
Needs special processing with that support.
We will assume a single thread per process from now on.
MPI processes are identified by their ranks:
If total nprocs processes in computation, rank ranges from 0,
1, …, nprocs-1. (true in C and FORTRAN).
nprocs does not change during computation.
16
Communicators and
Process Groups
Communicator: is a group of processes that can
communicate with one another.
Most MPI routines require a communicator argument to
specify the collection of processes the communication is
based on.
All processes in the computation form the communicator
MPI_COMM_WORLD.
MPI_COMM_WORLD is pre-defined by MPI, available anywhere
Can create subgroups/subcommunicators within
MPI_COMM_WORLD.
A process may belong to different communicators, and have
different ranks in different communicators.
17
How many CPUs, Which one am I …
How many CPUs: MPI_COMM_SIZE()
Who am I: MPI_COMM_RANK()
Can compute data decomposition etc.
Know total number of grid points, total number of cpus and
current cpu id; can calc which portion of data current cpu is to
work on.
E.g. Poisson equ on a square
Ranks also used to specify source and destination of
communications.
…
int my_rank, ncpus;
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
MPI_Comm_size(MPI_COMM_WORLD, &ncpus);
…
int MPI_Comm_rank(MPI_Comm comm, int *rank)
int MPI_Comm_size(MPI_Comm comm, int *size)
MPI_COMM_RANK(comm,rank,ierr)
MPI_COMM_SIZE(comm,size,ierr)
my_rank value different on different processors !
18
Compiling, Running
MPI standard does not specify how to start up the
program
Compiling and running MPI code implementation dependent
MPI implementations provide utilities/commands for
compiling/running MPI codes
Compile: mpicc, mpiCC, mpif77, mpif90, mpCC, mpxlf …
mpiCC –o myprog myfile.C (cluster)
mpif90 –o myprog myfile.f90 (cluster)
CC –Ipath_mpi_include –o myprog myfile.C –lmpi (SGI)
mpCC –o myprog myfile.C (IBM)
Run: mpirun, poe, prun, ibrun …
mpirun –np 2 myprog (cluster)
mpiexec –np 2 myprog (cluster)
poe myprog –node 1 –tasks_per_node 2 … (IBM)
19
Example
#include <mpi.h>
#include <stdio.h>
#include <string.h>
int main(int argc, char **argv)
{
char message[256];
int my_rank;
MPI_Status status;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);
if(my_rank==0){
strcpy(message,”Hello, there!”);
MPI_Send(message,strlen(message)+1,MPI_CHAR,1,99,MPI_COMM_WORLD);
}
else if(my_rank==1) {
MPI_Recv(message,256,MPI_CHAR,0,99,MPI_COMM_WORLD,&status);
printf(“Process %d received: %s\n”,my_rank,message);
}
MPI_Finalize();
return 0;
}
mpirun –np 2 test_hello
Process 1 received: Hello, there!
6 MPI functions:
MPI_Init()
MPI_Finalize()
MPI_Comm_rank()
MPI_Comm_size()
MPI_Send()
MPI_Recv()
20
MPI Communications
Point-to-point communications
Involves a sender and a receiver, one processor to another
processor
Only the two processors participate in communication
Collective communications
All processors within a communicator participate in
communication (by calling same routine, may pass different
arguments);
Barrier, reduction operations, gather, …
21
Point-to-Point Communications
22
Send / Receive
Message data: what to send/receive?
Where is the message? Where to put it?
What kind of data is it? What is the size?
Message envelope: where to send/receive?
Sender, receiver
Communication context
Message tag.
…
MPI_Send(message,strlen(message)+1,MPI_CHAR,1,99,MPI_COMM_WORLD);
MPI_Recv(message,256,MPI_CHAR,0,99,MPI_COMM_WORLD,&status);
…
23
Send
buf – memory address of start of message
count – number of data items
datatype – what type each data item is (integer,
character, double, float …)
dest – rank of receiving process
tag – additional identification of message
comm – communicator, usually MPI_COMM_WORLD
int MPI_Send(void *buf,int count,MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)
MPI_SEND(BUF,COUNT,DATATYPE,DEST,TAG,COMM,IERROR)
<type>BUF(*)
integer COUNT,DATATYPE,DEST,TAG,COMM,IERROR
char message[256];
MPI_Send(message,strlen(message)+1,MPI_CHAR,1,99,MPI_COMM_WORLD);
24
Receive
buf – initial address of receive buffer
count – number of elements in receive buffer (size of receive buffer)
may not equal to the count of items actually received
Actual number of data items received can be obtained by calling
MPI_Get_count().
datatype – data type in receive buffer
source – rank of sending process
tag – additional identification for message
comm – communicator, usually MPI_COMM_WORLD
status – object containing additional info of received message
ierror – return code
int MPI_Recv(void *buf,int count,MPI_Datatype datatype,int source,int tag,
MPI_Comm comm,MPI_Status *status)
MPI_RECV(BUF,COUNT,DATATYPE,SOURCE,TAG,COMM,STATUS,IERROR)
<type>BUF(*)
integer COUNT,DATATYPE,SOURCE,TAG,COMM,STATUS(MPI_STATUS_SIZE),IERROR
Actual number of data items received can be queried from status object; it may be
smaller than count, but cannot be larger (if larger overflow error).
char message[256];
MPI_Recv(message,256,MPI_CHAR,0,99,MPI_COMM_WORLD,&status);
25
MPI_Recv Status
In C: MPI_Status structure, 3 members; MPI_Status status
status.MPI_TAG – tag of received message
status.MPI_SOURCE – source rank of message
status.MPI_ERROR – error code
In FORTRAN: integer array; integer status(MPI_STATUS_SIZE)
Status(MPI_TAG) – tag of received message
status(MPI_SOURCE) – source rank of message
status(MPI_ERROR) – error code
Length of received message: MPI_Get_count()
Int MPI_Get_count(MPI_Status *status, MPI_Datatype datatype, int *count)
MPI_GET_COUNT(STATUS,DATATYPE,COUNT,IERROR)
integer STATUS(MPI_STATUS_SIZE),DATATYPE,COUNT,IERROR
MPI_Status status;
int count;
…
MPI_Recv(message,256,MPI_CHAR,0,99,MPI_COMM_WORLD,&status);
MPI_Get_count(&status, MPI_CHAR, &count); // count contains actual length