DE Till TUYEN SINH LOP 10 TRUNG HQC PHO THONG
Nam hoc 2010-2011
so
GIAO DVC vA DAo T~o
BENTRE
~ ~
,
DE CHINHTlruC
Mon:TOAN
ThOi
gian:
120phut, khong ki thili gian giao
ad
ca.u
1: (3,5
iliim)
{
2x-3y
=-4
a) Giai h~ phuong trinh
x+3y=7
b) Giai phuong trinh: X4
-1
Ox
2
+ 9
=
0 .
bang phuong phap cong.
ca.u
2: (3,5
iliim)
Cho phuong trinh
X2+2(m-l)x+m2
=0
(m
leitham s6) (1).
a)
Giai
phuong trinh
(1)
khi m
=
O.
b) Tim cac gia tri cua tham s6 m de phirong trinh (1) co hai nghiem phan biet,
c) Khi phuong trinh (1) co hai nghiem phan biet XI'
X
2
•
Tim cac gia tri cua tham s6 m
sao cho XI
+X2 +X
I
X
2
=
5.
ca.u
3:
(6,0 iliim)
Cho cac ham s6 y
=
X2
co d6 thi lei(P) va y
=
-2x
+
3 co d6 thi la (D).
a) Ve
(P)
va
(D)
tren cling mot h~ true toa d9 vuong goc.
b) Xac dinh toa d9 cac giao diem
CUa
(P) va (D) bang phuong phap dai s6.
c) ViSt phuong trinh dirong thang tiSp xuc voi (P) va tao voi hai true toa d9 m9t tam
giac co dien tich bang
±
(don vi di~n tich).
ca.u
4:
(7,0 iliim)
Cho mra dirong trim tam 0 dirong kinh AB
=
2R. Tir A va B lfut hrot ke hai tiSp tuyen
Ax va By voi mra dirong tron, Qua diem Mthu9c mra dirong trim (Mkhac A va B) ke tiSp
tuyen thir ba c~t cac tiSp tuyen Ax va By l§n hrot tai
C
va D.
a) Chirng minh r~ng:
i) Tir giac AOMC n9i tiep.
ii) CD
=
CA + DB va
COD=900.
iii) ACBD
=
R2.
b) Khi
RAM
=
60°. Chung to tam giac BDMla tam giac dSu va tinh dien tich cua hinh
quat tron ch~n cung MB cua mra dirong tron
da
cho theo R .
HSt
HUONG DAN CHAM CUA DE THI TUYEN SINH 10 THPT
NAM HQC 2010 -2011
MON ToAN
(Huang d~n cham g6m 04 trang)
Cfiu
Cau 1
3,50
d
Cau 2
3,50
d
Dap
an
Diim
a) Giai h~ phuong trinh { 2x -
3
y
=
-4 bang phirong phap cong .
x+3y=7
{
2X-3
Y
=-4(1) ~
(1)
cong
(2)
ta diroc 3x
=
3 ~
x
=
1
x+3y
=
7 (2)
_._
x
=
1
=>
1+ 3y
=
7 ~ y
=
2 0,50
_
_ _
_ _._
•.
_ _.
__
_._ _
_ _
_
Vay
h~ phuong trinh co nghiem (x
=
l;y
=
2).
0,50
0,50
b) Giai phuong trinh: X4 -1
Ox
2
+ 9
=
0 .
Dat:
t
=
X2
(t ~
0).
Phuong trinh
(1)
co dang:
(2
-lOt +
9
=
0 .
0,50
_
_ _._ _._
(0) [:: : ~
(thoa) 0,50
_._ _
_ _._ _._._ ._ _.
Khi
t
=
1
¢:::>
X2
=
1
¢:::>
x
=
±1
0,50
_._ _
.•.
_.__
.
__ __
.
__
._
_ _ _._
.•.
_._ _._
_ _ __
._ _._ _
•
_ _. ~
Khi
t
=
9
¢:::>
X2
=
9
¢:::>
x
=
±3
V~y: phirong trinh co bon nghiem x
=
±I; x
=
±3
0,50
Cho phuong trinh
X2
+ 2( m -I)x + m'
=
0
a) Giai phirong trinh (1) khi m
==
0 .
Khi m
=
0 phirong trinh co dang:
X2
+ 2.(0 -1)x + 0
2
=
0
0,50
-
¢:::>
X2 -
2x
=
0
¢:::>
x(x - 2)
=
0
[
X
=
0 V~ h inh cc hai hi ~ 0 50
~ x
=
2 ay: p uong tri co ai ng iem x
=
0; x
=
2 ,
b) Tim cac gia tri cua tham
so
m de phuong trinh (1) co hai nghiem
pharr biet,
Ta co:
tl'
=
(m
-1/ -
m'
=
m2- 2m +
1-
m'
=
-2m +
1
0,50
_._ _
_ _._ _._-_._ _
_-_._ _._-_._
Phuong trinh (1) co hai nghiem phan biet
, 1 1 0,50
~ tl
> 0
¢:::>
-2m
+
1> 0
<=>
m
<-
Yay: m
<-
2· 2
_
_ _.
._._ _ _ _._-
_
__
._
c) Khi phirong trinh (1) co hai nghiern phan biet
Xl'
x
2
Tim cac gia tri
cua tham
s6
m sao cho
Xl
+
X
2
+
X
l
X
2
=
5 .
j
Xl +X2
=
-£.
=
-2(m -1)
Khi m
<.!.
theo dinh
1y
Viet ta co: a 0,50
2
c
2
X
I
.x
2
=-=m
a
0,50
_
-
_ _
_
•.
__ _
_ _ __
.•
_
_ _
_.
__
._ _
__ _
_ _
_._ _
_ __ __
_ _ _
_ _
_
~ [ml
=
-I
0,25
m
2
=3
~
_ _._ _._-_._ _._ _._ _
-
_._
_
_._._._._ _._
V~y: K~t hQ'Pv61 diSu kien m <
i,
ta dircc m
=
-1 0,25
_
_._ _._ _._ _._._ _._-_
_._ _
_-_.
'-_
__
._ _
1
1
1
~
_._ _._ _._ _
_
D6 thi:
b) Xac dinh toa dQ giao di~m cua (P) va (D) bang phirong phap dai s6.
Phuong trinh hoanh dQ giao diSm cua (P) va (D) la:
<=>
X2
=
-2x
+ 3
<=>
X2
+
2x -
3
=
0
Ta c6:
a+b+c=O::::>[X
I
=1
x
2
=-3
+ 1
[
X
=
1
[y
=
1
I
::::>
I
x
2
=-3
Y2
=9
V~y
cac giao diSm la:
M(l;l); N(-3;9)
c) Tim phirong trinh dirong thang tiep xuc voi (P) va tao voi hai true
toa dQmot tam giac, c6 d~~ntich bang 1. b;fo
G9i (d) la duong thang can tim. Phuong trinh (d):
Y
=
ax
+
b
(a:t:.
0)
Phuong trinh hoanh dQ giao diSm cua (P) va (d) la:
X2 -
ax -
b
=
o.
_(~)t~~E_~~~_
v6i
(~L~=_~
= !!_2
+
~~_~_~_i2 .
~5~ _
Giao diSm cua (d) voi cac true toa dQ 1a
A(-!! ;O), B(O;b).
a
D
'
A
,
h ' .,
s
Ilbll
bl b
2
ien tic cua tam giac OAB
="2 ;; =
2I
a
/'
Cau 3 Cho cac ham 56
Y
=
X2
c6 d6 thi la (P) va y
=
-2x
+ 3 c6 d6 thi la (D).
6,00 d a) Ve (P) va (D) tren cling met h~ true toa dQvuong g6c.
Bang mot 56 gia tri:
._
~
-2
-1
0
1
2
4
1
0
1
4
(D) di qua (0;3)va
(1;0)
2
y
3
_____________ _!t _
-~
-2
o
1
-1
x
2
1,00
0,50
1,50
0,50
0,50
0,50
Chirng minh rang:
iii) AC.BD
=
R2.
Ta co: {CM
=
CA ~ AC.BD
=
CM.DM
DM=DB
0,50
Ma
CM.DM =OM
2
=R
2
~
Ae.
[SO
=
R
L
0,50
b) Khi
iiAM
=
60°. Chirng to tam giac BDMla tam giac dSu
Ta co:
iiAM
=
MiD
=
60° (cling chan cung MB)
L _~._._ __._ .__. ._ _.__.___ __ _'_"" ._ __ ._ .__ __ __ __ _ . _ _ _ __ _ _._-_._
Q!.?Q
Cau4
7,00
c1
0,50
1
b
2
1
2
SOAB
= -
<=>
-1-1
= -
<;:>
2b
=
lal
(2)
4 2
a
4
0,50
[
b =0
Tir (1) va (2) suy ra 4b
4
+ 4b
=
0
<=>
b
=-1
V6i
b=O=>a=O
(loai)
V
oi b
=
-1
=>
a
=
±2
V~y: (d) c6 phirong trinh
y
=
±2x-l
0,50
0,50
a) Chtrng minh rang:
i) Tir giac AOMC noi tiep.
{
- °
CAO=90
Ta co: _ (tinh chat tiep tuyen)
CMO=900
._ _._-_.
__
_ _
_ _ _._ _
_ _._-_ _ _._ _._ _ _._ _
_ _.
-_._-_._ , _.
=>
CAO
+
CMO
=
180° Vay: Tir giac AOMC n9i tiep dirong tron duong
kinh oc.
0,50
0,25
ii) CD
=
CA + DB
Ta co : {CM
=
CA (tinh ch~t hai tiep tuyen dt nhau tai mo.t diem) 0 50
DM=DB '
V~y CD=CM+DM=CA+DBo
Chirng minh
CoD
=
90° :
T
.
{AOC=Coii
(inh hI. h
0.;'
I.':' nh
0 ~
diem) 050
a co : _ _ t c at ai tiep tuyen cat au tai mot iern '
DOB=DOM
_._
._
Ma
ADM
+
JiOiJ
=
180° (kS bu) 0,50
_._ _._ _._ ._ j
- - - 180°
Yay: COD
=
COM + MOD
= =
90°
o
2 0,50
3
~
_ _._
-_._ '
_-
Ma
MlMD
din tai
D (DM=DB)
V~y
MlMD
d~u.
0,50
Tinh dien tich cua hinh quat tron chan cung MB cua mra dirong tron da
cho theo R.
Ta co:
BAM
=
60
0
=>
J.iCiB
=
120
0
0,50
f
S
=
7rR
2
n
=
7rR
2
120
=
7rR2
(dvdt)
0,75
q 360 360 3
1) N~u hoc sinh him bai khong theo huong d~n chsm nhtrng dung v~n cho du di€m theo
tung cau.
2)
H9C
sinh co th€ dung may tinh dm tay (cac loai may tinh diroc phep dem vao phong thi)
d€ him bai n~u d€ bai khong yeu du giai theo phuong phap nao.
HET
~.
~
,
-