X2
t
Mesh 1
Mesh 2
(a)
(c)
x,
(b)
(d)
Figure 4: Mesh configurations (a) Q4Q4, (b) Q4T3, (c) T3Q4 and (d) T3T3 all with nl 1= n21= 2 and
19
X’2
7
4
1
8
3
5
1
22
23 24 25
9
4
6
2
2 3
11
8
8
4
5
0
12
9
9
5
6
1
13
0
10
6
7
2
Figure 5: Mesh configuration Q4Q4 showing element and node numbers.
20
-1
Figure 6: Example 3.1 displaced geometry (exaggerated)for mesh configuration Q4Q4 obtained using the
standardmaster-slaveapproach.
21
1.15[
I
I I I
1 I i I
I
1
n
exact
o
n=4
1.1
-n
n=8
– -A–
n=16
:
,?, *
,.Q ; ,?, * f ,!?, f Q f ~ :
1.05- /\ .“ ‘“.
‘\ ,“ “\
/\
,1,. ” “. /, ‘1
/ i“”
./\
‘\, \
\“
“\
,, } ““./\~” “\ “
‘1
“\/ .“,
j. \ .1
“\l \
;\.’
.\
.\/\
/ “A.1
\ !
~. 1.” ,
/“ \ I
~ ‘(’
“Y’” \
/ .4’. “! ‘, /’ { .“~.’ ,
1 “’j
“{ ‘\
I
/\ .“
“/\ \
/
I\”’. lj
I
/\
.“ 1 \
\
/ / (
II \
0- ‘ l,\”’”\
\
I
//”\” ’\\
\
/.
/\.”” /\, ,.l~\’ , l\, \
/
‘, \
~~ /
/ ~ , .\ //” \
\.”” I
“\ \
:. OAA
‘. II.J
/ \ \
1-
bdl.+ii Lf?!b &e& LiLi k.A&:.dit i.J”o “~;
0.95 -
0.9
I
0.85-
I
I )
I I I
1
I
I
o
1
2 3 4
5 6 7 8
9
10
‘2
Figure 7: Axial stress01 ~atcentroids of elements with edges on the slave boundary.Results arepresentedfor
mesh configuration Q4Q4 using the standardmaster-slave approach.
22
1.15
1.1
1.05
=1
o
0.95
0.9
1 I
I-II
exact
o
n=4
-*-
n=8
– -A–
n=16
+: QA f q-q
4 –+0” g“fk-”y-o++
1“
“.I
y=”=?? +-40 p.
;J’; l
~“
/n\
“.1 I
I
i,l\l
1,.”
I ‘.
f. ‘
1.1
i“. \
.“1
!1
\\
,“.l Ml\, ~’/ ll\
illl’
1;1
““l “
1’”. \ .
I
.’”1 ‘ I
I; J”” ,.,
l\l ”, y:
l\ l’.,/’”.
if
~ ,.””I .
I
/ I , 1
1
I ;,
I
I
I
8
I
\
I
I
r
I
‘.,I
I
I
I
I ,; ‘
I
I
l’”
“.1/ I
;/:
\l ““ (/ ,
;,.” 1; I
I
‘.I
I .,1:”
I
I
I
‘.,,/ I
Ii I
;1
‘.,1/
\ , ”
1; I
I
\J
‘f. I
I
l:; ;,;
1’(
~;
; J
I
I
i
[
I
/1”, I
/
I
1;
I :l\
I
, \,
;’l , I
l\
/l I
,1;
;1’,1
“1 I
l.”l\
l/\
i , “.1
l ””\ ;, J
,1
\ “.1
!Il
.1/;
“1
~.1.
\! Ii.
‘It
~li;i.
l\
ill
,1
‘“l j
\
1 11””. ”, ,
i 1,
i.
I i j 1~”., ’”~f \ j 1’
,1
\/l I” ”
‘1
II
\/n
\; II “. ,. ,1
\;l,
,1
II
;/
II “. ” ,,
‘1
,1
;/ ‘1
‘1
; ; ~1 “ ”
\;
A
d~&Ad~
AiiAh
L:
0.85
I
I I I I I
I
I I
o
1 2 3
4 5
6
7 8 9
10
‘2
Figure 8: Axial stress61~atcentroidsof elements with edges on the slave boundary. Results arepresentedfor
mesh configuration Q8Q8 usingthe standardmaster-slave approach.
23
I
I
I I I I I [
I 1
1
2
1
-3
Figure 9:
–2.8 -2.6 -2.4 -2.2
-2
Iog(lh)
Energy norms of the error for Example 3.1 obtained
–1.8 –1.6
–1.4 -1.2
using
the standardmaster-slaveapproach.
*
*
.
24
–“7
–/3
-!3
F_
o
c
-l:?
–1:3
I
[
I
1
n
Q4Q4
“
Q8Q8
1
[
–14
I
I
I I
I I I I
3 –2.8 –2.6 -2.4 –2.2 -2 –1.8 -1.6 -1.4 -1.2
Iog(lln)
10: Energy norms of the errorfor Example 3.2 obtained using the presentmethod.
25
4.2
–4.4
4.6
–4.8
~
c
-5
>
p
0
~ –5.2
~
-5.4
n
Case 1
Case 2
-5.6
-5.8
1
-5.2
-2 –1 .8 -1.6
-1.4 -1.2
–1 -0.8 -0.6
Iog(lh)
Figure 11: Energy norms of the error for Example 3.3 obtained using the presentmethod for mesh configura-
tion Q4Q4. Case
k refers to the problem with Mesh k designated as master.
26
–7.2
‘:-2.2
-2
–1.8 –1.6 -1.4 –1 .2
-1 –0.8 -0.6
Iog(l/n)
Figure l12:Energy nomdensities of theenor for Exmple3.30bttined using thepresent method formesh
configuriition Q4Q4. Case
k refers to the problem with Mesh k designated as master.
27
1
0.8
0.6
0.4
102
0.2
0
-0.2
. II
exact
n
n=4
.–m -
n=8
-0.4 ~
1
I
o
1 2 3 4
5 6
7 8 9
10
‘2
Figure 13: Normalized shear stress 612 atcentroids of elements with edges on the slave boundary for mesh
configuration Q4Q4 (Case 1).
,.
28