Tải bản đầy đủ (.pdf) (28 trang)

Bài tập toán cao cấp Tập 1 part 4 doc

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (380.72 KB, 28 trang )

3.1. Ma trˆa
.
n 83
(DS. AB = BA =

cos(α + β) = sin(α + β)
sin(α + β) cos(α + β)

)
4. T´ınh c´ac lu˜yth`u
.
acu

a ma trˆa
.
n A
n
nˆe
´
u:
1) A =

11
01

.(D
S. A
n
=

1 n


01

)
Chı

dˆa
˜
n. Su
.

du
.
ng phu
.
o
.
ng ph´ap quy na
.
p to´an ho
.
c
2) A =

cos ϕ −sin ϕ
sin ϕ cos ϕ

.(D
S. A
n
=


cos nϕ −sin nϕ
sin nϕ cos nϕ

)
3) A =









d
1
d
2

.
.
.

.
.
.
d
n










.(D
S. A
n
= diag

d
n
1
d
n
2
d
n
n

)
4) A =



210
010

001



.(D
S.



22
n
− 10
010
002



)
5. Ch´u
.
ng minh r˘a
`
ng nˆe
´
u AB = BA th`ı
1) (A + B)
2
= A
2
+2AB + B

2
.
2) A
2
− B
2
=(A + B)(A − B).
3) (A + B)
n
= A
n
+ C
1
n
A
n−1
B + C
2
n
A
n−2
B
2
+ ···+ B
n
.
Chı

dˆa
˜

n. Su
.

du
.
ng phu
.
o
.
ng ph´ap quy na
.
p to´an ho
.
c.
Gia

su
.

cho dath´u
.
c P (x)=a
0
+ a
1
x + ···+ a + kx
k
. Khi d´oma
trˆa
.

n vuˆong
P (A)=a
0
E + a
1
A + ···+ a
k
A
k
,x= A
d
u
.
o
.
.
cgo
.
i l`a gi´a tri
.
cu

adath´u
.
c P (x)ta
.
i x = A v`a biˆe

uth´u
.

c
P (A)=a
0
E + a
A
+ ···+ a
k
A
k
go
.
il`adath´u
.
ccu

a ma trˆa
.
n A.
6. Gia

su
.

P (x)v`aQ(x) l`a hai d
ath´u
.
cv´o
.
ihˆe
.

sˆo
´
∈Pv`a A l`a ma trˆa
.
n
vuˆong cˆa
´
p n.Ch´u
.
ng minh r˘a
`
ng
84 Chu
.
o
.
ng 3. Ma trˆa
.
n. D
-
i
.
nh th ´u
.
c
1) ϕ(x)=P(x)+Q(x) ⇒ ϕ(A)=P (A)+Q(A).
2) ψ(x)=P(x)Q(x) ⇒ ψ(A)=P (A)Q(A).
3) P (A)Q(A)=Q(A)P (A).
7. T`ım gi´a tri
.

cu

adath´u
.
c ma trˆa
.
n
1) P (x)=x
2
− 5x +3, A =

2 −1
−33

.(DS.

00
00

)
2) P(x)=3x
2
− 2x +5, A =



1 −23
2 −41
3 −52




.(D
S.



21 −23 15
−13 34 10
−9 22 25



)
3) P (x)=3x
5
−4x
4
− 10x
3
+3x
2
− 7, A =



010
001
000




.
(D
S.



−70 3
0 −70
00−7



)
4) Ch´u
.
ng minh r˘a
`
ng ma trˆa
.
n



12−2
10 3
13 0




l`a nghiˆe
.
mcu

ad
ath´u
.
c P (x)=x
3
− x
2
−9x +9.
5) Ch´u
.
ng minh r˘a
`
ng ma trˆa
.
n
A =



100
010
003




l`a nghiˆe
.
mcu

ad
ath´u
.
c P (x)=x
3
− 5x
2
+7x − 3.
3.2. D
-
i
.
nh th ´u
.
c 85
8. Ch´u
.
ng minh r˘a
`
ng nˆe
´
u A l`a ma trˆa
.
nd
u
.

`o
.
ng ch´eo cˆa
´
p n v´o
.
i c´ac
phˆa
`
ntu
.

trˆen d
u
.
`o
.
ng ch´eo ch´ınh l`a λ
1

2
, ,λ
n
th`ı v´o
.
imo
.
id
ath´u
.

c
P (x) ma trˆa
.
n P(A)c˜ung l`a ma trˆa
.
nd
u
.
`o
.
ng ch´eo v´o
.
i c´ac phˆa
`
ntu
.

trˆen
du
.
`o
.
ng ch´eo ch´ınh l`a P(λ
1
), P (λ
2
), ,P(λ
n
). H˜ay x´et tru
.

`o
.
ng ho
.
.
p
khi A l`a ma trˆa
.
n vuˆong cˆa
´
p3.
9. Ch´u
.
ng minh r˘a
`
ng (A
n
)
T
=(A
T
)
n
.
Chı

dˆa
˜
n. Ch´u
.

ng minh b˘a
`
ng phu
.
o
.
ng ph´ap quy na
.
pv`asu
.

du
.
ng hˆe
.
th ´u
.
c(AB)
T
= B
T
A
T
.
10. Ch´u
.
ng minh r˘a
`
ng mo
.

i ma trˆa
.
n vuˆong A d
ˆe
`
u c´o thˆe

biˆe

udiˆe
˜
ndu
.
´o
.
i
da
.
ng tˆo

ng mˆo
.
t ma trˆa
.
nd
ˆo
´
ix´u
.
ng v`a mˆo

.
t ma trˆa
.
n pha

nx´u
.
ng.
Chı

dˆa
˜
n. D˘a
.
t P =
1
2
(A + A
T
), Q =
1
2
(A − A
T
), A = P + Q.
3.2 D
-
i
.
nh th´u

.
c
3.2.1 Nghi
.
ch thˆe
´
Mo
.
i c´ach s˘a
´
pxˆe
´
pth´u
.
tu
.
.
n phˆa
`
ntu
.

cu

atˆa
.
pho
.
.
psˆo

´
J = {1, 2, ,n}
d
u
.
o
.
.
cgo
.
il`amˆo
.
t ho´an vi
.
cu

a n phˆa
`
ntu
.

d
´o . S ˆo
´
c´ac ho´an vi
.
c´o thˆe

c´o
cu


a n phˆa
`
ntu
.

cu

a J l`a n!. Hai sˆo
´
trong mˆo
.
t ho´an vi
.
lˆa
.
p th`anh mˆo
.
t
nghi
.
ch thˆe
´
nˆe
´
usˆo
´
l´o
.
nho

.
nd´u
.
ng tru
.
´o
.
csˆo
´
b´e ho
.
n. Sˆo
´
nghi
.
ch thˆe
´
cu

a
ho´an vi
.

1
, ,α
n
)du
.
o
.

.
ck´yhiˆe
.
ul`a
inv(α
1

2
, ,α
n
),
d´o c h ´ınh l`a sˆo
´
c˘a
.
plˆa
.
p th`anh nghi
.
ch thˆe
´
trong ho´an vi
.
.
Ho´an vi
.

1
, ,α
n

} du
.
o
.
.
cgo
.
il`aho´an vi
.
ch˘a
˜
n nˆe
´
usˆo
´
nghi
.
ch thˆe
´
cu

a n´o l`a ch˘a
˜
n v`a go
.
il`aho´an vi
.
le

nˆe

´
usˆo
´
nghi
.
ch thˆe
´
l`a le

.
3.2.2 D
-
i
.
nh th´u
.
c
Mˆo
˜
i ma trˆa
.
n vuˆong cˆa
´
p n (v`a chı

c´o ma trˆa
.
n vuˆong !) dˆe
`
utu

.
o
.
ng ´u
.
ng
v´o
.
imˆo
.
tsˆo
´
-go
.
il`adi
.
nh th´u
.
c cu

a n´o.
86 Chu
.
o
.
ng 3. Ma trˆa
.
n. D
-
i

.
nh th ´u
.
c
Gia

su
.

cho ma trˆa
.
n vuˆong cˆa
´
p n trˆen tru
.
`o
.
ng P(R, C):
A =


a
ij


n
1
=







a
11
a
12
a
1n
a
21
a
22
a
2n
.
.
.
.
.
.
.
.
.
.
.
.
a
n1

a
n2
a
nn






(3.7)
D
i
.
nh th´u
.
ccu

a ma trˆa
.
n A l`a mˆo
.
tsˆo
´
thu d
u
.
o
.
.

ct`u
.
c´ac phˆa
`
ntu
.

cu

a
ma trˆa
.
n theo quy t˘a
´
c sau dˆay:
1) d
i
.
nh th´u
.
ccˆa
´
p n b˘a
`
ng tˆo

ng d
a
.
isˆo

´
cu

a n!sˆo
´
ha
.
ng;
2) mˆo
˜
isˆo
´
ha
.
ng cu

adi
.
nh th´u
.
cl`at´ıch
a
i
1
j
1
a
i
2
j

2
···a
i
n
j
n
(3.8)
cu

a n phˆa
`
ntu
.

cu

a ma trˆa
.
nm`ac´u
.
mˆo
˜
i h`ang v`a mˆo
˜
icˆo
.
tdˆe
`
uc´od´ung
mˆo

.
t phˆa
`
ntu
.

trong t´ıch n`ay;
3) sˆo
´
ha
.
ng a
i
1
j
1
a
i
2
j
2
···a
i
n
j
n
cu

adi
.

nh th´u
.
c c´o dˆa
´
ucˆo
.
ng nˆe
´
u ho´an
vi
.
lˆa
.
pnˆenbo
.

i c´ac sˆo
´
hiˆe
.
u h`ang {i
1
,i
2
, ,i
n
} v`a ho´an vi
.
lˆa
.

pnˆenbo
.

i
c´ac sˆo
´
hiˆe
.
ucˆo
.
t {j
1
,j
2
, ,j
n
} l`a c`ung ch˘a
˜
n ho˘a
.
cc`ung le

v`a c´o dˆa
´
u
tr `u
.
(“ −”) trong tru
.
`o

.
ng ho
.
.
p ngu
.
o
.
.
cla
.
i.
K´yhiˆe
.
u: Di
.
nh th ´u
.
ccu

a ma trˆa
.
n A du
.
o
.
.
ck´yhiˆe
.
ul`a

det A, |A| hay










a
11
a
12
a
1n
a
21
a
22
a
2n
.
.
.
.
.
.
.

.
.
.
.
.
a
n1
a
n2
a
nn










.
Nhˆa
.
n x´et. 1) Nhu
.
vˆa
.
y, d
ˆe


x´ac di
.
nh dˆa
´
ucu

asˆo
´
ha
.
ng di
.
nh th ´u
.
cta
cˆa
`
n t´ınh
s = inv(i
1
, ,i
n
)
σ = inv(j
1
, ,j
n
)
v`a khi d

´odˆa
´
ucu

asˆo
´
ha
.
ng di
.
nh th´u
.
cl`adˆa
´
ucu

ath`u
.
asˆo
´
(−1)
s+σ
.
3.2. D
-
i
.
nh th ´u
.
c 87

2) Nˆe
´
u ta viˆe
´
t c´ac th`u
.
asˆo
´
cu

a t´ıch (3.8) theo th´u
.
tu
.
.
t˘ang dˆa
`
ncu

a
sˆo
´
hiˆe
.
u h`ang:
a
i
1
j
1

a
i
2
j
2
···a
i
n
j
n
= a

1
a

2
···a

n
th`ı
det A =


1
, ,α
n
)
(−1)
inv(α
1

, ,α
n
)
a

1
a

2
···a

n
. (3.9)
trong d
´o t ˆo

ng lˆa
´
y theo mo
.
i ho´an vi
.

1

2
, ,α
n
)cu


a c´ac sˆo
´
1, 2, ,n.
Trong ma trˆa
.
n vuˆong (3.7) ta cˆo
´
d
i
.
nh k (k<n) h`ang v`a k cˆo
.
t n`ao
d´o. Gia

su
.

d
´o l`a c´ac h`ang v´o
.
isˆo
´
hiˆe
.
u i
1
<i
2
< ···<i

k
v`a c´ac cˆo
.
tv´o
.
i
sˆo
´
hiˆe
.
u j
1
<j
2
< ···<j
k
.T`u
.
c´ac phˆa
`
ntu
.

n˘a
`
m trˆen giao cu

a h`ang
v`a c´ac cˆo
.

td
u
.
o
.
.
ccho
.
n ta c´o thˆe

lˆa
.
pd
i
.
nh th ´u
.
ccˆa
´
p k











a
i
1
j
1
a
i
1
j
2
a
i
1
j
k
a
i
2
j
1
a
i
2
j
2
a
i
2
j
k

.
.
.
.
.
.
.
.
.
.
.
.
a
i
k
j
1
a
i
k
j
2
a
i
k
j
k











.
D
i
.
nh th´u
.
cn`ayd
u
.
o
.
.
cgo
.
il`ad
i
.
nh th´u
.
cconcˆa
´
p k cu


a ma trˆa
.
n A.K´y
hiˆe
.
u
M
i
1
i
2
i
k
j
1
j
2
···j
k
.
Nˆe
´
utabo

di c´ac h`ang th´u
.
i
1
,i
2

, ,i
k
v`a c´ac cˆo
.
tth´u
.
j
1
,j
2
, ,j
k
th`ı c´ac phˆa
`
ntu
.

c`on la
.
icu

a ma trˆa
.
n A s˜e ta
.
o th`anh mˆo
.
t ma trˆa
.
n vuˆong

cˆa
´
p n − k.Di
.
nh th´u
.
ccu

a ma trˆa
.
n vuˆong n`ay l`a di
.
nh th´u
.
c con cˆa
´
p
n − k cu

a ma trˆa
.
n A v`a d
u
.
o
.
.
cgo
.
il`aphˆa

`
nb`u(hay d
i
.
nh th´u
.
cconb`u)
cu

ad
i
.
nh th ´u
.
c con M
i
1
i
2
···i
k
j
1
j
2
···j
k
v`a du
.
o

.
.
ck´yhiˆe
.
ul`aM
i
1
i
2
···i
k
j
1
j
2
···j
k
.
Di
.
nh th´u
.
c con b`uv´o
.
idˆa
´
u
(−1)
(i
1

+i
2
+···+i
k
)+(j
1
+j
2
+···+j
k
)
du
.
o
.
.
cgo
.
il`aphˆa
`
nb`uda
.
isˆo
´
cu

adi
.
nh th ´u
.

c con M
i
1
···i
k
j
1
···j
k
.
Tru
.
`o
.
ng ho
.
.
pd˘a
.
cbiˆe
.
t: di
.
nh th´u
.
c con b`u M
ij
cu

adi

.
nh th´u
.
c con cˆa
´
p
1l`aa
ij
 cu

a A du
.
o
.
.
cgo
.
i l`a phˆa
`
nb`ucu

a phˆa
`
ntu
.

a
ij
cu


a A v`a sˆo
´
A
ij
=(−1)
i+j
M
ij
go
.
i l`a phˆa
`
nb`uda
.
isˆo
´
cu

a phˆa
`
ntu
.

a
ij
.
88 Chu
.
o
.

ng 3. Ma trˆa
.
n. D
-
i
.
nh th ´u
.
c
3.2.3 T´ınh chˆa
´
tcu

adi
.
nh th´u
.
c
Di
.
nh th´u
.
c c´o c´ac t´ınh chˆa
´
t sau
I. Qua ph´ep chuyˆe

nvi
.
ma trˆa

.
n, d
i
.
nh th ´u
.
ccu

a n´o khˆong dˆo

i, t´u
.
c
l`a det A = det A
T
.
T`u
.
t´ınh chˆa
´
tb`ınh d
˘a

ng n`ay gi˜u
.
a c´ac h`ang v`a c´ac cˆo
.
tcu

ad

i
.
nh
th ´u
.
c suy ra r˘a
`
ng mˆo
.
tdiˆe
`
u kh˘a

ng di
.
nh n`ao d´o d ˜ad´ung v´o
.
i h`ang th`ı
n´o c˜ung d
´ung v´o
.
icˆo
.
t. Do d
´o c´ac t´ınh chˆa
´
ttiˆe
´
p theo dˆay chı


cˆa
`
n ph´at
biˆe

u cho h`ang.
II. Nˆe
´
ud
ˆo

ichˆo
˜
hai h`ang cho nhau th`ı di
.
nh th´u
.
cd
ˆo

idˆa
´
u.
III. Th`u
.
asˆo
´
chung cu

amo

.
i phˆa
`
ntu
.

cu

amˆo
.
t h`ang cu

ad
i
.
nh th´u
.
c
c´o thˆe

d
u
.
a ra ngo`ai dˆa
´
ud
i
.
nh th ´u
.

c.
IV. D
i
.
nh th´u
.
c c´o mˆo
.
t h`ang b˘a
`
ng 0 l`a b˘a
`
ng 0.
V. D
i
.
nh th ´u
.
c c´o hai h`ang giˆo
´
ng nhau l`a b˘a
`
ng 0.
VI. Nˆe
´
ud
i
.
nh th ´u
.

c c´o hai h`ang ty

lˆe
.
v´o
.
i nhau th`ı n´o b˘a
`
ng 0.
VII. Nˆe
´
u c´ac phˆa
`
ntu
.

cu

a h`ang th´u
.
i cu

adi
.
nh th´u
.
c D c´o da
.
ng
a

ij
= b
ij
+ c
iJ
, i = 1,n, j = 1,n th`ı di
.
nh th ´u
.
c D b˘a
`
ng tˆo

ng hai di
.
nh
th ´u
.
c D
1
+ D
2
, trong d´odi
.
nh th ´u
.
c D
1
c´o h`ang th´u
.

i l`a (b
i1
b
i2
···b
in
)
v`a di
.
nh th´u
.
c D
2
c´o h`ang th´u
.
i l`a (c
i1
,c
i2
, ,c
in
) c`on c´ac h`ang kh´ac
l`a c´ac h`ang tu
.
o
.
ng ´u
.
ng cu


a D.
VIII. Nˆe
´
ud
i
.
nh th´u
.
c c´o mˆo
.
t h`ang l`a tˆo

ho
.
.
p tuyˆe
´
n t´ınh cu

a c´ac
h`ang kh´ac th`ı di
.
nh th ´u
.
cb˘a
`
ng 0.
IX. D
i
.

nh th´u
.
c khˆong dˆo

inˆe
´
u thˆem v`ao mˆo
.
t h`ang n`ao d´omˆo
.
ttˆo

ho
.
.
p tuyˆe
´
n t´ınh cu

a c´ac h`ang kh´ac.
X. D
i
.
nh th´u
.
cb˘a
`
ng tˆo

ng c´ac t´ıch cu


a c´ac phˆa
`
ntu
.

cu

amˆo
.
t h`ang
n`ao d
´o v ´o
.
i phˆa
`
nb`uda
.
isˆo
´
tu
.
o
.
ng ´u
.
ng.
det A = a
i1
A

i1
+ a
i2
A
i2
+ ···+ a
in
A
in
=
n

j=1
a
ij
A
ij
. (3.10)
Nhˆa
.
nx´et. Ngu
.
`o
.
itac˜ung d`ung t´ınh chˆa
´
t X n`ay d
ˆe

l`am di

.
nh ngh˜ıa
di
.
nh th´u
.
c.
3.2. D
-
i
.
nh th ´u
.
c 89
XI. Tˆo

ng c´ac t´ıch cu

a c´ac phˆa
`
ntu
.

cu

amˆo
.
t h`ang n`ao d
´o v ´o
.

i phˆa
`
n
b`ud
a
.
isˆo
´
tu
.
o
.
ng ´u
.
ng cu

a c´ac phˆa
`
ntu
.

cu

a h`ang kh´ac l`a b˘a
`
ng 0:
n

j=1
a

ij
A
kj
=0, ∀k = i; i,k = 1,n.
Nhˆa
.
nx´et. C´ac t´ınh chˆa
´
t I-III l`a nh˜u
.
ng t´ınh chˆa
´
tco
.
ba

n. C´ac t´ınh
chˆa
´
t sau l`a nh˜u
.
ng hˆe
.
qua

cu

a ba t´ınh chˆa
´
tˆa

´
y.
3.2.4 Phu
.
o
.
ng ph´ap t´ınh d
i
.
nh th´u
.
c
I. Di
.
nh th ´u
.
ccˆa
´
p 1, cˆa
´
p2v`acˆa
´
p3du
.
o
.
.
c t´ınh theo c´ac cˆong th´u
.
c

|a
11
| = a
11
;





a
11
a
12
a
21
a
22





= a
11
a
22
− a
12
a

21
; (3.11)







a
11
a
12
a
13
a
21
a
22
a
23
a
31
a
32
a
33








= a
11
a
22
a
33
+ a
12
a
23
a
31
+ a
13
a
21
a
32
− a
13
a
22
a
31
− a
11

a
23
a
32
− a
12
a
21
a
33
.
Khi t´ınh di
.
nh th ´u
.
ccˆa
´
p 3 ta c´o thˆe

su
.

du
.
ng quy t˘a
´
c Surrus “da
.
ng
tam gi´ac” ho˘a

.
c “da
.
ng du
.
`o
.
ng song song” sau dˆay












•••
•••
•••

























•••
•••
•••













(+) (−)
a
11
a
12
a
13
a
11
a
12
a
21
a
22
a
23
a
21
a
22
a
31
a
32
a
33
a

31
a
32
90 Chu
.
o
.
ng 3. Ma trˆa
.
n. D
-
i
.
nh th ´u
.
c
⊕⊕⊕
II. T´ınh di
.
nh th´u
.
ccˆa
´
p n
1
+
Khai triˆe

ndi
.

nh th´u
.
c theo c´ac phˆa
`
ntu
.

cu

amˆo
.
t h`ang ho˘a
.
cmˆo
.
t
cˆo
.
t (t´ınh chˆa
´
t XI, (3.10)).
2
+
Su
.

du
.
ng c´ac t´ınh chˆa
´

tcu

ad
i
.
nh th ´u
.
cd
ˆe

biˆe
´
ndˆo

idi
.
nh th´u
.
cd
˜a
cho th`anh di
.
nh th´u
.
cm´o
.
i sao cho ngoa
.
itr`u
.

mˆo
.
t phˆa
`
ntu
.

a
i
0
j
0
=0,tˆa
´
t
ca

c´ac phˆa
`
ntu
.

c`on la
.
icu

a h`ang th´u
.
i
0

(ho˘a
.
ccˆo
.
t j
0
)dˆe
`
ub˘a
`
ng 0. Khi
d´o
det A =(−1)
i
0
+j
0
a
i
0
j
0
M
i
0
j
0
.
Tiˆe
´

p theo l`a l˘a
.
pla
.
i qu´a tr`ınh d
´odˆo
´
iv´o
.
i M
i
0
j
0
l`a di
.
nh th ´u
.
ccˆa
´
p thˆa
´
p
ho
.
nmˆo
.
tdo
.
nvi

.
.
3
+
Su
.

du
.
ng c´ac t´ınh chˆa
´
tcu

adi
.
nh th ´u
.
cdˆe

biˆe
´
ndˆo

idi
.
nh th´u
.
cd˜a
cho th`anh d
i

.
nh th´u
.
c tam gi´ac (t´u
.
cl`ad
i
.
nh th´u
.
c m`a mo
.
i phˆa
`
ntu
.

o
.

mˆo
.
tph´ıa cu

ad
u
.
`o
.
ng ch´eo ch´ınh dˆe

`
ub˘a
`
ng 0). Khi d´odi
.
nh th´u
.
cb˘a
`
ng
t´ıch c´ac phˆa
`
ntu
.

trˆen du
.
`o
.
ng ch´eo ch´ınh.
4
+
Phu
.
o
.
ng ph´ap truy hˆo
`
i: biˆe
´

ndˆo

i, khai triˆe

ndi
.
nh th´u
.
c theo h`ang
ho˘a
.
c theo cˆo
.
t sao cho d
i
.
nh th ´u
.
cd
˜a cho c´o thˆe

biˆe

udiˆe
˜
n qua c´ac di
.
nh
th ´u
.

cc`ung da
.
ng nhu
.
ng cˆa
´
p thˆa
´
pho
.
n.
5
+
Biˆe

udiˆe
˜
ndi
.
nh th´u
.
cd˜a cho du
.
´o
.
ida
.
ng tˆo

ng c´ac di

.
nh th´u
.
cc`ung
cˆa
´
p.
6
+
D`ung di
.
nh l´y Laplace: Gia

su
.

trong ma trˆa
.
n vuˆong A cˆa
´
p n ta
cho
.
nmˆo
.
t c´ach t`uy ´y m h`ang (hay m cˆo
.
t) 1  m  n −1. Khi d
´o d i
.

nh
th ´u
.
c det A b˘a
`
ng tˆo

ng c´ac t´ıch cu

amo
.
idi
.
nh th ´u
.
c con cˆa
´
p m n˘a
`
m trˆen
c´ac h`ang du
.
o
.
.
ccho
.
n nhˆan v´o
.
i phˆa

`
nb`uda
.
isˆo
´
tu
.
o
.
ng ´u
.
ng cu

ach´ung.
C
´
AC V
´
IDU
.
V´ı du
.
1. 1) T´ınh sˆo
´
nghi
.
ch thˆe
´
trong ho´an vi
.


531642

.
2) V´o
.
inh˜u
.
ng gi´a tri
.
n`ao cu

a i v`a j th`ı sˆo
´
ha
.
ng a
51
a
1i
a
2j
a
43
a
32
cu

a
di

.
nh th´u
.
ccˆa
´
p5c´odˆa
´
utr`u
.
.
3.2. D
-
i
.
nh th ´u
.
c 91
Gia

i. 1) Dˆe

t´ınh sˆo
´
nghi
.
ch thˆe
´
tiˆe
.
nlo

.
.
iho
.
nca

l`a tiˆe
´
n h`anh nhu
.
sau: (i) d
ˆa
`
u tiˆen, t´ınh c´o bao nhiˆeu sˆo
´
d´u
.
ng tru
.
´o
.
csˆo
´
1 (gia

su
.

c´o k
1

sˆo
´
)rˆo
`
iga
.
ch bo

sˆo
´
1 kho

i ho´an vi
.
; (ii) tiˆe
´
pdˆe
´
n t´ınh xem c´o bao nhiˆeu
sˆo
´
d´u
.
ng tru
.
´o
.
csˆo
´
2 (gia


su
.

k
2
)rˆo
`
iga
.
ch bo

sˆo
´
2 kho

i ho´an vi
.
; v.v Khi
d´o
inv(α
1

2
, ,α
n
)=k
1
+ k
2

+ ···+ k
n
.
B˘a
`
ng phu
.
o
.
ng ph´ap v`u
.
anˆeudˆe
˜
thˆa
´
yl`a
inv(531642) = 2 + 4 + 1 + 2 = 9.
2) C´ac chı

sˆo
´
i v`a j chı

c´o thˆe

nhˆa
.
n c´ac gi´a tri
.
sau d

ˆay: (a) i =4,
j = 5; ho˘a
.
c (b) i =5v`aj =4v`ıv´o
.
i c´ac gi´a tri
.
kh´ac cu

a i v`a j t´ıch
d
˜a c h o c h ´u
.
a ´ıt nhˆa
´
t hai phˆa
`
ntu
.

cu

ac`ung mˆo
.
tcˆo
.
t. D
ˆe

x´ac di

.
nh dˆa
´
u
cu

asˆo
´
ha
.
ng ta s˘a
´
pxˆe
´
p c´ac th`u
.
asˆo
´
cu

a t´ıch theo th´u
.
tu
.
.
t˘ang cu

achı

sˆo

´
th ´u
.
nhˆa
´
trˆo
`
i t´ınh sˆo
´
nghi
.
ch thˆe
´
cu

a ho´an vi
.
c´ac chı

sˆo
´
th ´u
.
hai. Ta
c´o
a
1i
a
2j
a

32
a
43
a
51
+) Gia

su
.

i =4,j =5⇒ inv(45231) = 8. Do vˆa
.
yv´o
.
i i =4,j =5
sˆo
´
ha
.
ng d
˜a cho c´o dˆa
´
u (+).
+) Gia

su
.

i =5,j =4⇒ inv(54231) = 9. Do d´osˆo
´

ha
.
ng d˜acho
c´o dˆa
´
utr`u
.
.Vˆa
.
ysˆo
´
ha
.
ng d˜a cho chı

c´o dˆa
´
utr`u
.
khi i =5,j =4. 
V´ı du
.
2. T´ınh c´ac d
i
.
nh th ´u
.
csaudˆay
1) ∆
1

=









000a
14
00a
23
0
0 a
32
00
a
41
000










;2)∆
2
=









1424
2336
3212
4112









92 Chu
.
o
.
ng 3. Ma trˆa

.
n. D
-
i
.
nh th ´u
.
c
Gia

i. 1) C´o thˆe

t´ınh ∆
1
b˘a
`
ng c´ach su
.

du
.
ng t´ınh chˆa
´
tX.

1
=(−1)
1+4
a
14








00a
23
0 a
32
0
a
41
00







=(−1)
1+4
a
14
(−1)
2+3
a
23






0 a
32
a
41
0





= a
14
a
23
a
32
a
41
.
Kˆe
´
t qua

n`ay c˜ung c´o thˆe


thu du
.
o
.
.
c nh`o
.
d
i
.
nh ngh˜ıa di
.
nh th´u
.
c. Theo
d
i
.
nh ngh˜ıa ∆
1
l`a tˆo

ng da
.
isˆo
´
cu

a 4! = 24 sˆo
´

ha
.
ng, trong d´ochı

c´o sˆo
´
ha
.
ng
a
14
a
23
a
32
a
41
l`a kh´ac 0. V`ı ho´an vi
.
cu

a c´ac chı

sˆo
´
th ´u
.
hai ch˘a
˜
nnˆensˆo

´
ha
.
ng c´o dˆa
´
u
cˆo
.
ng. T`u
.
d´o ta thu du
.
o
.
.
c∆
1
= a
14
a
23
a
32
a
41
.
2)
´
Ap du
.

ng t´ınh chˆa
´
t XI ta c´o thˆe

khai triˆe

ndi
.
nh th´u
.
c theo cˆo
.
t
th ´u
.
nhˆa
´
t

2
=1







336
212

112







−2







424
212
212







+3








424
336
112







− 4







424
336
212








=1·0 −2 ·0+3· 0 −4 ·0=0.
O
.

d
ˆay mo
.
idi
.
nh th´u
.
ccˆa
´
p3d
ˆe
`
u c´o hai cˆo
.
tty

lˆe
.
v´o
.
i nhau, nˆen ch´ung
b˘a
`
ng 0. 

V´ı du
.
3. T´ınh c´ac d
i
.
nh th´u
.
c
1) ∆
1
=









1123
1231
2364
3594










, 2) ∆
2
=












201 31
−11 2 2 3
140−15
213 12
12−131













.
3.2. D
-
i
.
nh th ´u
.
c 93
Gia

i. Ta biˆe
´
ndˆo

i c´ac di
.
nh th´u
.
cd
ˆe

thu du
.
o
.

.
c c´ac sˆo
´
0 trong mˆo
.
t
h`ang (cˆo
.
t). Ta quy u
.
´o
.
c c´ac k´yhiˆe
.
u: h
2
− h
1
→ h

2
c´o ngh˜ıa l`a lˆa
´
y
h`ang th´u
.
hai tr`u
.
di h`ang th´u
.

nhˆa
´
tdˆe

thu du
.
o
.
.
c h`ang th´u
.
hai m´o
.
i.
Tu
.
o
.
ng tu
.
.
nhu
.
vˆa
.
ytak´yhiˆe
.
u c´ac ph´ep biˆe
´
ndˆo


i theo cˆo
.
t.
1) Ta c´o

1
=









1123
1231
2364
3594










h
2
− h
1
→ h

2
h
3
−2h
1
→ h

3
h
4
−3h
1
→ h
4
=










112 3
011−2
012−2
023 5









=1·(−1)
1+1







11−2
12−2
23 5








=







11−2
12−2
23 5







h
2
− h
1
→ h

2
=








11−2
01 0
23 5







=1·(−1)
2+2





1 −2
2 −5





= −1.

2) D
ˆe

t´ınh ∆
2
ta thu
.
.
chiˆe
.
n ph´ep biˆe
´
ndˆo

i: c
1
−2c
3
→ c

1
; c
4
−3c
3

c

4
; c

5
− c
3
→ c

5
v`a thu du
.
o
.
.
c

2
=














001 0 0

−51 2 −41
140−15
−41 3 −15
−41 3 −8 −1
32−16 2














= a
13
A
13
=1·(−1)
1+3










−51−41
14−15
−41−8 −1
326 2









D
ˆo
´
iv´o
.
idi
.
nh th´u
.
ccˆa
´
p4v`u
.

athudu
.
o
.
.
ctac˜ung tiˆe
´
n h`anh tu
.
o
.
ng tu
.
.
:
94 Chu
.
o
.
ng 3. Ma trˆa
.
n. D
-
i
.
nh th ´u
.
c
c
1

+5c
4
→ c

1
; c
2
− c
4
→ c

2
; c
3
+4c
4
→ c

3
v`a thu du
.
o
.
.
c

2
=










00 0 1
26 −119 5
−92−12 −1
13 0 14 2









= a
14
A
14
=1·(−1)
1+4








26 −119
−92−12
13 0 14







Nhu
.
vˆa
.
ytad˜a d u
.
aviˆe
.
c t´ınh di
.
nh th´u
.
ccˆa
´
p5vˆe
`
t´ınh di

.
nh th´u
.
ccˆa
´
p3.
D
ˆe

t´ınh di
.
nh th´u
.
ccˆa
´
p 3 n`ay ta c´o thˆe

d`ung quy t˘a
´
c Sarrus ho˘a
.
ctiˆe
.
n
ho
.
nca

l`a biˆe
´

nd
ˆo

i n´o theo h`ang: h
2
+2h
1
→ h

2
v`a c´o

2
= −







26 −119
43 0 26
13 0 14








= −a
12
A
12
= −(−1)(−1)
1+2





43 26
13 14





= −264.
V´ı du
.
4. T´ınh c´ac d
i
.
nh th´u
.
c
1) ∆
1

=









12−15
1563
−1 −235
24−28









, 2) ∆
2
=













1 −13−24
0320 1
004−1 −1
0642 3
1 −13−25












.
Gia

i. Ta s˜e t´ınh c´ac d
i

.
nh th ´u
.
cd˜achob˘a
`
ng phu
.
o
.
ng ph´ap du
.
avˆe
`
d
i
.
nh th´u
.
c tam gi´ac.
1) Ta c´o

1
=










12−15
1563
−1 −235
24−28









h
2
− h
1
→ h

2
h
3
+ h
1
→ h

3
h

4
− 2h
1
→ h

4
=









12−15
03 7 −2
00 2 10
00 0 −2









.

V`ıd
i
.
nh th ´u
.
c tam gi´ac b˘a
`
ng t´ıch c´ac phˆa
`
ntu
.

trˆen du
.
`o
.
ng ch´eo ch´ınh
nˆen

1
=1·3 · 2 · (−2) = −12.
3.2. D
-
i
.
nh th ´u
.
c 95
2)


2
=












1 −13−24
0320 1
004−1 −1
0642 3
1 −13−25













h
4
− 2h
2
→ h

4
h
5
− h
1
→ h

5
=












1 −13−24
0320 1

004−1 −1
0002 1
0000 1












=1·3 ·4 ·2 · 1=24.
V´ı du
.
5. T´ınh c´ac d
i
.
nh th ´u
.
c
1) ∆
n
=
















a
0
−10 0 00
a
1
x −10 00
a
2
0 x −1 00
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
a
n−1
000 0 −1
a
n
000 0 x
















;
2) ∆
n
=












7400 00
3740 00
0374 00
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
0000 37












3) ∆
n
=
















α + βαβ 0 00
1 α + βαβ 00
01α + β 00
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
000 α+ βαβ
000 1 α + β















96 Chu
.
o
.
ng 3. Ma trˆa
.
n. D
-

i
.
nh th ´u
.
c
Gia

i. 1) Khai triˆe

n∆
n+1
theo h`ang cuˆo
´
i (h`ang th´u
.
n + 1) ta c´o

n+1
=(−1)
n+1
a
n











−10 0
x −1 0
.
.
.
.
.
.
.
.
.
.
.
.
00 −1










+ x











a
0
−10 0
a
1
x −1 0
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
a

n−1
00 x










D
i
.
nh th´u
.
cth´u
.
nhˆa
´
to
.

vˆe
´
pha

il`ad
i

.
nh th ´u
.
c tam gi´ac (= (−1)
n
), di
.
nh
th ´u
.
cth´u
.
hai l`a di
.
nh th´u
.
cc`ung da
.
ng v´o
.
i∆
1
nhu
.
ng cˆa
´
p n. Do vˆa
.
y
di

.
nh th´u
.
c∆
n+1
c´o thˆe

biˆe

udiˆe
˜
nbo
.

ihˆe
.
th ´u
.
c truy hˆo
`
i sau dˆay:

n+1
= a
n
(−1)
n
(−1)
n
+ x∆

n
.
D
ˆe

thu du
.
o
.
.
cbiˆe

uth´u
.
ctˆo

ng qu´at cu

a∆
n+1
ta x´et ∆
1
v`a ∆
2
:

1
= a
0
;∆

2
=





a
0
−1
a
1
x





= a
0
x −a
1
.
Nhu
.
vˆa
.
y∆
1
l`a dath´u

.
cbˆa
.
c0v´o
.
ihˆe
.
sˆo
´
a
0
, c`on ∆
2
l`a dath´u
.
cbˆa
.
c nhˆa
´
t
v´o
.
ihˆe
.
sˆo
´
a
0
v`a a
1

.
Ta ch´u
.
ng to

r˘a
`
ng ∆
n+1
c´o da
.
ng tu
.
o
.
ng tu
.
.
:

n+1
= a
0
x
n
+ a
1
x
n−1
+ ···+ a

n
.
Gia

su
.

d˜ach´u
.
ng minh ∆
n
= a
0
x
n−1
+ ···+ a
n−1
. Khi d´o

n+1
= a
n
+ x∆
n
= a
n
+ x(a
0
x
n−1

+ ···+ a
n−1
)
= a
0
x
n
+ a
1
x
n−1
+ ···+ a
n−1
x + a
n
.
2) Khai triˆe

nd
i
.
nh th ´u
.
c theo h`ang th´u
.
nhˆa
´
t ta thu d
u
.

o
.
.
chˆe
.
th ´u
.
c
truy hˆo
`
i:

n
=7∆
n−1
− 12∆
n−2
⇒ ∆
n
− 3∆
n−1
=4∆
n−1
− 3 · 4∆
n−2
= 4[∆
n−1
−3∆
n−2
].

3.2. D
-
i
.
nh th ´u
.
c 97
T`u
.
d
´o suy ra

n
− 3∆
n−1
=4
n−2
(∆
2
− ∆
1
)

1
=7, ∆
2
=






74
37





=37
v`a do d
´o

n
− 3∆
n−1
=4
n−2
[37 −21] = 4
n−2
· 4
2
=4
n
.
Nˆe
´
ut`u
.
hˆe

.
th ´u
.
c truy hˆo
`
i ta biˆe
´
ndˆo

i c´ach kh´ac th`ı thu du
.
o
.
.
c

n
− 4∆
n−1
= 3[∆
n−1
−4∆
n−2
]=···=3
n−2
(∆
2
− ∆
1
)

=3
n−2
· 3
2
=3
n
.
Nhu
.
vˆa
.
y

n
− 3∆
n−1
=4
n

n
− 4∆
n−1
=3
n

⇒ ∆
n−1
=4
n
− 3

n
v`a do d´o

n
=3∆
n−1
+4
n
=4
n+1
− 3
n+1
.
3) Ta biˆe

udiˆe
˜
ncˆo
.
tth´u
.
nhˆa
´
tdu
.
´o
.
ida
.
ng c´ac tˆo


ng hai sˆo
´
ha
.
ng α+β,
98 Chu
.
o
.
ng 3. Ma trˆa
.
n. D
-
i
.
nh th ´u
.
c
1+0,0+0, ,0 + 0 v`a viˆe
´
tdi
.
nh th ´u
.
cdu
.
´o
.
ida

.
ng tˆo

ng hai d
i
.
nh th´u
.
c

n
=















ααβ 0 00
1 α + βαβ 00
01α + β 00

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
00 0 α+ βαβ
00 0 1 α + β

















 
D
1
+















βαβ 0 00
0 α + βαβ 00
01α + β 00
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
00 0 α+ βαβ
00 0 1 α + β

















 
D
2
= D
1
+ D
2
.
T´ınh D
1
.Lˆa
´
ycˆo
.
tth´u
.
hai tr `u
.
d
icˆo
.
tth´u
.
nhˆa
´
t nhˆan v´o

.
i β,lˆa
´
ycˆo
.
t
th ´u
.
ba tr `u
.
d
icˆo
.
tth´u
.
hai v`u
.
athud
u
.
o
.
.
c nhˆan v´o
.
i β, v.v Kˆe
´
t qua

ta

thu d
u
.
o
.
.
cdi
.
nh th ´u
.
c tam gi´ac
D
1
=















α 00 00

1 α 0 00
01α 00
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
000 α 0
000 1 α
















= α
n
.
3.2. D
-
i
.
nh th ´u
.
c 99
T´ınh D
2
. Khai triˆe

n D
2
theo cˆo
.
tth´u
.
nhˆa
´
t ta thu d

u
.
o
.
.
c:
D
2
= β












α + βαβ 00
1 α + β 00
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
00 α+ βαβ
00 1 α + β












= β∆
n−1
.
Nhu
.
vˆa
.
ytathud

u
.
o
.
.
c cˆong th´u
.
c truy hˆo
`
i∆
n
= α
n
+ β∆
n−1
.
Ta t´ınh mˆo
.
t v`ai di
.
nh th ´u
.
cdˆa
`
u tiˆen

1
= α + β =
α
2

−β
2
α −β
;

2
=





α + βαβ
1 α + β





= α
2
+ αβ + β
2
=
α
3
− β
3
α −β
,


3
=







α + βαβ 0
1 α + βαβ
01α + β







= α
3
+ α
2
β + αβ
2
+ β
4
=
α

4
− β
4
α − β
;
Ta s˜e ch´u
.
ng minh r˘a
`
ng hˆe
.
th ´u
.
c

m
=
α
m+1
−β
m+1
α −β
· (*)
d´ung v´o
.
i m ∈ N bˆa
´
tk`y. Ta ´ap du
.
ng phu

.
o
.
ng ph´ap quy na
.
p to´an ho
.
c.
Gia

su
.

(∗)d´ung v´o
.
i m = n−1. Ta ch´u
.
ng minh n´o d´ung v´o
.
i m = n.
Khi m = n − 1 ta c´o

n−1
=
α
n
−β
n
α −β



n
= α
n
+ β
α
n
− β
n
α −β
=
α
n+1
−α
n
β + α
n
β − β
n+1
α −β
=
α
n+1
− β
n+1
α −β
·
100 Chu
.
o

.
ng 3. Ma trˆa
.
n. D
-
i
.
nh th ´u
.
c
Nhu
.
vˆa
.
yhˆe
.
th ´u
.
c(∗)d
´ung ∀m ∈ N.Dod´o

n
=
α
n+1
− β
n−1
α −β
· 
B

`
AI T
ˆ
A
.
P
1. X´ac d
i
.
nh sˆo
´
nghi
.
ch thˆe
´
trong c´ac ho´an vi
.
.
1) (1 3 5 7 9 2 4 6 8). (D
S. 10)
2) (9 8 7 6 5 4 3 2 1). (D
S. 36)
3) (2 5 8 1 4 7 3 6 9). (D
S. 12)
4) (7 5 4 6 1 2 3 9 8). (D
S. 17)
2. Cho
.
n k v`a  sao cho ho´an vi
.

1) (7 4 3 k8 5 2) l`a ho´an vi
.
le

.(D
S. k =6, =1)
2) (k 347 2 6 5) l`a ho´an vi
.
ch˘a
˜
n. (D
S. k =8, =1)
3) (4 8 k 25 1 7) l`a ho´an vi
.
ch˘a
˜
n. (D
S. k =6, =3)
4) (6 3 4 k 7  2 1) l`a ho´an vi
.
le

.(D
S. k =5, =8)
3. X´ac di
.
nh sˆo
´
nghi
.

ch thˆe
´
trong c´ac ho´an vi
.
.
1) nn− 1 n − 2 2 1. (DS.
n(n − 1)
2
)
2)1357 2n − 1246 2n.(D
S.
n(n − 1)
2
)
3)246 2n 135 2n −1. (D
S.
n(n +1)
2
)
4) 2n − 12n −3 5312n 2n − 2 6 4 2. (D
S.
3n(n − 1)
2
)
4. Trong c´ac t´ıch sau d
ˆay, t´ıch n`ao l`a sˆo
´
ha
.
ng cu


adi
.
nh th´u
.
ccˆa
´
p7;
x´ac di
.
nh dˆa
´
ucu

asˆo
´
ha
.
ng d´o.
1) a
43
a
53
a
63
a
15
a
23
a

34
a
71
.(DS. Khˆong pha

i)
2) a
23
a
67
a
54
a
16
a
35
a
41
a
72
.(DS. Sˆo
´
ha
.
ng c´o dˆa
´
ucˆo
.
ng)
3) a

15
a
28
a
74
a
36
a
61
a
43
.(DS. Khˆong pha

i)
4) a
72
a
16
a
33
a
55
a
27
a
61
a
44
.(DS. Sˆo
´

ha
.
ng c´o dˆa
´
ucˆo
.
ng)
3.2. D
-
i
.
nh th ´u
.
c 101
5. Trong c´ac t´ıch sau dˆay, t´ıch n`ao l`a sˆo
´
ha
.
ng cu

adi
.
nh th´u
.
ccˆa
´
ptu
.
o
.

ng
´u
.
ng x´ac d
i
.
nh dˆa
´
ucu

asˆo
´
ha
.
ng d´o.
1) a
43
a
61
a
52
a
13
a
25
a
34
.(DS. Khˆong pha

i)

2) a
27
a
63
a
14
a
56
a
35
a
41
a
72
.(DS. L`a sˆo
´
ha
.
ng cu

adi
.
nh th´u
.
ccˆa
´
p7
v´o
.
idˆa

´
u+)
3) a
15
a
28
a
75
a
36
a
81
a
43
.(DS. Khˆong pha

i)
4) a
n1
a
n−12
a
1n
.
(D
S. L`a sˆo
´
ha
.
ng cu


adi
.
nh th´u
.
ccˆa
´
p n v´o
.
idˆa
´
u(−1)
n(n−1)
2
)
5) a
12
a
23
a
k,k+1
a
n−1,n
a
n1
.
(D
S. L`a sˆo
´
ha

.
ng cu

adi
.
nh th´u
.
ccˆa
´
p n v´o
.
idˆa
´
u(−1)
n−1
)
6) a
13
a
24
a
35
a
n−2,n
a
n−1,1
a
n2
.
(D

S. Sˆo
´
ha
.
ng cu

adi
.
nh th ´u
.
ccˆa
´
p n v´o
.
idˆa
´
u “+”)
6. X´ac di
.
nh c´ac sˆo
´
k v`a  sao cho trong di
.
nh th´u
.
ccˆa
´
p6:
1
+

C´ac t´ıch sau l`a sˆo
´
ha
.
ng cu

a n´o v´o
.
idˆa
´
u“−”:
1) a
62
a
35
a
k3
a
44
a
6
a
21
.(DS. k =5, =1)
2) a
1k
a
25
a
44

a
6
a
52
a
31
.(DS. k =6, =3)
2
+
C´ac t´ıch sau l`a sˆo
´
ha
.
ng c´o dˆa
´
u+:
3) a
63
a
16
a
5
a
45
a
2k
a
31
.(DS. k =2, =4)
4) a

k5
a
21
a
34
a
13
a
6
a
62
.(DS. k =5, =4)
7. Trong d
i
.
nh th´u
.
ccˆa
´
p n
1) t´ıch c´ac phˆa
`
ntu
.

cu

adu
.
`o

.
ng ch´eo ch´ınh l`a sˆo
´
c´o dˆa
´
ug`ı?
(D
S. +)
2) t´ıch c´ac phˆa
`
ntu
.

cu

adu
.
`o
.
ng ch´eo phu
.
c´o dˆa
´
ug`ı?
(D
S. C´o dˆa
´
u “+” nˆe
´
u n =4k ho˘a

.
c n =4k + 1; v`a c´o dˆa
´
u“−”
nˆe
´
u n =4k + 2 ho˘a
.
c n =4k +3)
8. T´ınh c´ac di
.
nh th´u
.
ccˆa
´
p hai:
1)





a
2
ab
ab b
2






2)





a
2
+ ab + b
2
a
2
− ab + b
2
a + ba−b





3)





cos α −sin α
sin α cos α






4)





sin α cos α
sin β cos β





102 Chu
.
o
.
ng 3. Ma trˆa
.
n. D
-
i
.
nh th ´u
.

c
5)





1 log
b
a
log
a
b 1





6)





a + bi c + di
−c + di a −bi






; i
2
− 1.
7)







(1 −t)
2
1+t
2
2t
1+t
2
2t
1+t
2

(1 + t)
2
1+t
2








8)





εε
−1 ε





, ε = cos

3
+ i sin

3
.
(DS. 1) 0; 2) −2b
3
; 3) 1; 4) sin(α − β); 5) 0; 6) a
2
+ b
2

+ c
2
+ d
2
;
7) −1; 8) −1)
9. T´ınh c´ac d
i
.
nh th ´u
.
ccˆa
´
pba
1)







321
253
343








2)







abc
bca
cab







3)







cos α sin α cos β sin α sin β
−sin α cos α cos β cos α sin β

0 −sin β cos β







.
4)







1 i 1+i
−i 10
1 −i 01







; i
2
= −1, 5)








a
2
+1 ab ac
ab b
2
+1 bc
ac bc c
2
+1







6)








sin α cos α 1
sin β cos β 1
sin γ cos γ 1







7)







11ε
11ε
2
ε
2
εε








, ε = cos

3
+ i sin

3
8)







a + bc1
b + ca1
c + ab1







(D
S. 1) 8; 2) 3abc − a
3
− b

3
− c
3
; 3) 1; 4) −2; 5) 1 + a
2
+ b
2
+ c
2
;
6) sin( α − β) + sin(β −γ) + sin(γ − α); 7) −3; 8) 0)
3.2. D
-
i
.
nh th ´u
.
c 103
10. T´ınh di
.
nh th´u
.
c Vandermonde
1










1111
abcd
a
2
b
2
c
2
d
2
a
3
b
3
c
3
d
3










(D
S. (b −a)(c − a)( d − a)(c −b)(d −b)(d −c))
Chı

dˆa
˜
n. Lˆa
´
y c´ac cˆo
.
ttr`u
.
dicˆo
.
tth´u
.
nhˆa
´
trˆo
`
i khai triˆe

ndi
.
nh th´u
.
c
thu d
u
.

o
.
.
c theo h`ang th´u
.
nhˆa
´
t v`a tiˆe
´
ptu
.
cnhu
.
vˆa
.
yd
ˆo
´
iv´o
.
id
i
.
nh th´u
.
c
cˆa
´
p ba.
11. T´ınh d

i
.
nh th´u
.
c












11100
12300
01111
0 x
1
x
2
x
3
x
4
0 x
2

1
x
2
2
x
2
3
x
2
4












(D
S. (x
3
− x
2
)(x
4
− x

2
)(x
4
−x
3
) −2(x
3
−x
1
)(x
4
− x
1
)(x
4
− x
3
))
Chı

dˆa
˜
n. D`ung di
.
nh l´y Laplace cho h`ang th´u
.
nhˆa
´
t v`a th´u
.

hai v`a
chı

dˆa
˜
n cho b`ai 10.
12. T´ınh di
.
nh th ´u
.
cb˘a
`
ng c´ach khai triˆe

n (theo c´ac phˆa
`
ntu
.

cu

a h`ang
ho˘a
.
ccˆo
.
t):
1)










a 305
0 b 02
12c 3
000d









.(D
S. abcd)
2)










111a
221b
321c
123d









theo c´ac phˆa
`
ntu
.

cˆo
.
tth´u
.
tu
.
.
1
A. T. Vandermonde (1735-1796) l`a nh`a to´an ho
.

c Ph´ap.
104 Chu
.
o
.
ng 3. Ma trˆa
.
n. D
-
i
.
nh th ´u
.
c
(DS. 4a −c −d)
3)









a 111
b 011
c 101
d 110










theo c´ac phˆa
`
ntu
.

cu

acˆo
.
tth´u
.
nhˆa
´
t.
(D
S. 2a + b −c + d)
4)










12−12
2 −1 −21
abcd
−2 −112









theo c´ac phˆa
`
ntu
.

cu

a h`ang th´u
.
ba.
(D
S. −5a −5b −5c −5d)
5)










235−4
3 −54 2
−42 3 5
54−23









theo c´ac phˆa
`
ntu
.

h`ang th´u
.
hai.

(D
S. −2858)
6)









−51−41
14−15
−41−8 −1
326 2









theo c´ac phˆa
`
ntu
.


h`ang th´u
.
nhˆa
´
t
(D
S. −264)
13. D`ung d
i
.
nh ngh˜ıa dˆe

t´ınh c´ac di
.
nh th´u
.
c sau
1)







100
221
332








.(DS. 1)
2)







log
b
a 10
020
2 1 log
a
b







.(DS. 1)
3.2. D

-
i
.
nh th ´u
.
c 105
3)









1002
3004
0560
0780









.(D

S. 4)
4)









0034
0043
1200
2100









.(D
S. −21)
5)











a
1
00 0
a
1
a
1
0 0
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

a
n
a
n−1
a
n−2
a
1










.(DS. a
n
1
)
6)













0 00−1
0 0 −20
0 −30 0
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
−n 000













.(D
S. (−1)
n(n+1)
2
n!)
7)












1 aa a
02a a
003 a
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
000 n












.(D
S. n!)
8)













0 00a
1
0 0 a
2
a
1
0 a
3
a
2
a
1
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
a
n
a
3
a
2
a
1












.(D
S. (−1)
n(n−1)

2
a
1
a
2
a
n
)
106 Chu
.
o
.
ng 3. Ma trˆa
.
n. D
-
i
.
nh th ´u
.
c
9)










2104
−1204
−2305
−3406









.(D
S. 0)
10)












12121

11111
23000
32000
12000












.(D
S. 0)
14. Gia

i c´ac phu
.
o
.
ng tr`ınh
1)










1 144
−13−x
2
33
7 755
−7 −76x
2
− 3









= 0. (DS. x
1,2
= ±3; x
3,4
= ±3)
2)










12 34
−22− x 17
364+x 12
−4 x − 14 2 3









= 0. (D
S. x
1
=6;x
2
=5)
3)










1 xx
2
x
3
12 4 8
13 9 27
1 4 16 64









= 0. (DS. x
1
=2,x
2
=3,x
3
=4)
15. T´ınh c´ac di

.
nh th ´u
.
ccˆa
´
p n
1)












223 n
−10 3 n
−1 −20 n
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
−1 −2 −3 0












.(D
S. n!)
Chı

dˆa
˜
n. Thˆem h`ang th´u
.
nhˆa
´

t v`ao mo
.
i h`ang cu

adi
.
nh th´u
.
cb˘a
´
t
3.2. D
-
i
.
nh th ´u
.
c 107
dˆa
`
ut`u
.
h`ang th´u
.
hai.
2)













122 2
222 2
223 2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
222 n













.(D
S. −2(n − 2)!)
Chı

dˆa
˜
n. Lˆa
´
ymo
.
i h`ang (kˆe

t`u
.
h`ang th´u
.
ba) tr`u
.
di h`ang th´u
.
hai,

sau d´o l ˆa
´
y h`ang th´u
.
hai tr `u
.
di h`ang th´u
.
nhˆa
´
t nhˆan v´o
.
i2.
3)















xa

1
a
2
a
n−1
1
a
1
xa
2
a
n−1
1
a
1
a
2
x a
n−1
1
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
a
1
a
2
a
3
x 1
a
1
a
2
a
3
a
n
1
















.(D
S. (x−a
1
)(x−a
2
) ···(x−a
n
))
Chı

dˆa
˜
n. Lˆa
´
ytˆa
´
tca

c´ac cˆo
.
tcu

ad
i

.
nh th´u
.
ctr`u
.
d
icˆo
.
t cuˆo
´
ic`ung
nhˆan tu
.
o
.
ng ´u
.
ng v´o
.
i a
1
,a
2
, ,a
n
.
4)













011 1
101 1
110 1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
111 0













n×n
.(DS. (−1)
n−1
(n −1))
Chı

dˆa
˜
n. Thˆem cho cˆo
.
tth´u
.
nhˆa
´
ttˆa
´
tca

c´ac cˆo
.

t c`on la
.
i; sau d´o l ˆa
´
y
mo
.
i h`ang kˆe

t`u
.
h`ang th´u
.
hai tr`u
.
di h`ang th´u
.
nhˆa
´
t.
5)













1 nn n
n 2 n n
nn3 n
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
nnn n













.(D
S. (−1)
n
n!)
Chı

dˆa
˜
n. Lˆa
´
y c´ac h`ang th´u
.
nhˆa
´
t, th´u
.
hai, th´u
.
n−1tr`u
.
d
i h`ang
th ´u
.
n.

×