3.1. Ma trˆa
.
n 83
(DS. AB = BA =
cos(α + β) = sin(α + β)
sin(α + β) cos(α + β)
)
4. T´ınh c´ac lu˜yth`u
.
acu
’
a ma trˆa
.
n A
n
nˆe
´
u:
1) A =
11
01
.(D
S. A
n
=
1 n
01
)
Chı
’
dˆa
˜
n. Su
.
’
du
.
ng phu
.
o
.
ng ph´ap quy na
.
p to´an ho
.
c
2) A =
cos ϕ −sin ϕ
sin ϕ cos ϕ
.(D
S. A
n
=
cos nϕ −sin nϕ
sin nϕ cos nϕ
)
3) A =
d
1
d
2
.
.
.
.
.
.
d
n
.(D
S. A
n
= diag
d
n
1
d
n
2
d
n
n
)
4) A =
210
010
001
.(D
S.
22
n
− 10
010
002
)
5. Ch´u
.
ng minh r˘a
`
ng nˆe
´
u AB = BA th`ı
1) (A + B)
2
= A
2
+2AB + B
2
.
2) A
2
− B
2
=(A + B)(A − B).
3) (A + B)
n
= A
n
+ C
1
n
A
n−1
B + C
2
n
A
n−2
B
2
+ ···+ B
n
.
Chı
’
dˆa
˜
n. Su
.
’
du
.
ng phu
.
o
.
ng ph´ap quy na
.
p to´an ho
.
c.
Gia
’
su
.
’
cho dath´u
.
c P (x)=a
0
+ a
1
x + ···+ a + kx
k
. Khi d´oma
trˆa
.
n vuˆong
P (A)=a
0
E + a
1
A + ···+ a
k
A
k
,x= A
d
u
.
o
.
.
cgo
.
i l`a gi´a tri
.
cu
’
adath´u
.
c P (x)ta
.
i x = A v`a biˆe
’
uth´u
.
c
P (A)=a
0
E + a
A
+ ···+ a
k
A
k
go
.
il`adath´u
.
ccu
’
a ma trˆa
.
n A.
6. Gia
’
su
.
’
P (x)v`aQ(x) l`a hai d
ath´u
.
cv´o
.
ihˆe
.
sˆo
´
∈Pv`a A l`a ma trˆa
.
n
vuˆong cˆa
´
p n.Ch´u
.
ng minh r˘a
`
ng
84 Chu
.
o
.
ng 3. Ma trˆa
.
n. D
-
i
.
nh th ´u
.
c
1) ϕ(x)=P(x)+Q(x) ⇒ ϕ(A)=P (A)+Q(A).
2) ψ(x)=P(x)Q(x) ⇒ ψ(A)=P (A)Q(A).
3) P (A)Q(A)=Q(A)P (A).
7. T`ım gi´a tri
.
cu
’
adath´u
.
c ma trˆa
.
n
1) P (x)=x
2
− 5x +3, A =
2 −1
−33
.(DS.
00
00
)
2) P(x)=3x
2
− 2x +5, A =
1 −23
2 −41
3 −52
.(D
S.
21 −23 15
−13 34 10
−9 22 25
)
3) P (x)=3x
5
−4x
4
− 10x
3
+3x
2
− 7, A =
010
001
000
.
(D
S.
−70 3
0 −70
00−7
)
4) Ch´u
.
ng minh r˘a
`
ng ma trˆa
.
n
12−2
10 3
13 0
l`a nghiˆe
.
mcu
’
ad
ath´u
.
c P (x)=x
3
− x
2
−9x +9.
5) Ch´u
.
ng minh r˘a
`
ng ma trˆa
.
n
A =
100
010
003
l`a nghiˆe
.
mcu
’
ad
ath´u
.
c P (x)=x
3
− 5x
2
+7x − 3.
3.2. D
-
i
.
nh th ´u
.
c 85
8. Ch´u
.
ng minh r˘a
`
ng nˆe
´
u A l`a ma trˆa
.
nd
u
.
`o
.
ng ch´eo cˆa
´
p n v´o
.
i c´ac
phˆa
`
ntu
.
’
trˆen d
u
.
`o
.
ng ch´eo ch´ınh l`a λ
1
,λ
2
, ,λ
n
th`ı v´o
.
imo
.
id
ath´u
.
c
P (x) ma trˆa
.
n P(A)c˜ung l`a ma trˆa
.
nd
u
.
`o
.
ng ch´eo v´o
.
i c´ac phˆa
`
ntu
.
’
trˆen
du
.
`o
.
ng ch´eo ch´ınh l`a P(λ
1
), P (λ
2
), ,P(λ
n
). H˜ay x´et tru
.
`o
.
ng ho
.
.
p
khi A l`a ma trˆa
.
n vuˆong cˆa
´
p3.
9. Ch´u
.
ng minh r˘a
`
ng (A
n
)
T
=(A
T
)
n
.
Chı
’
dˆa
˜
n. Ch´u
.
ng minh b˘a
`
ng phu
.
o
.
ng ph´ap quy na
.
pv`asu
.
’
du
.
ng hˆe
.
th ´u
.
c(AB)
T
= B
T
A
T
.
10. Ch´u
.
ng minh r˘a
`
ng mo
.
i ma trˆa
.
n vuˆong A d
ˆe
`
u c´o thˆe
’
biˆe
’
udiˆe
˜
ndu
.
´o
.
i
da
.
ng tˆo
’
ng mˆo
.
t ma trˆa
.
nd
ˆo
´
ix´u
.
ng v`a mˆo
.
t ma trˆa
.
n pha
’
nx´u
.
ng.
Chı
’
dˆa
˜
n. D˘a
.
t P =
1
2
(A + A
T
), Q =
1
2
(A − A
T
), A = P + Q.
3.2 D
-
i
.
nh th´u
.
c
3.2.1 Nghi
.
ch thˆe
´
Mo
.
i c´ach s˘a
´
pxˆe
´
pth´u
.
tu
.
.
n phˆa
`
ntu
.
’
cu
’
atˆa
.
pho
.
.
psˆo
´
J = {1, 2, ,n}
d
u
.
o
.
.
cgo
.
il`amˆo
.
t ho´an vi
.
cu
’
a n phˆa
`
ntu
.
’
d
´o . S ˆo
´
c´ac ho´an vi
.
c´o thˆe
’
c´o
cu
’
a n phˆa
`
ntu
.
’
cu
’
a J l`a n!. Hai sˆo
´
trong mˆo
.
t ho´an vi
.
lˆa
.
p th`anh mˆo
.
t
nghi
.
ch thˆe
´
nˆe
´
usˆo
´
l´o
.
nho
.
nd´u
.
ng tru
.
´o
.
csˆo
´
b´e ho
.
n. Sˆo
´
nghi
.
ch thˆe
´
cu
’
a
ho´an vi
.
(α
1
, ,α
n
)du
.
o
.
.
ck´yhiˆe
.
ul`a
inv(α
1
,α
2
, ,α
n
),
d´o c h ´ınh l`a sˆo
´
c˘a
.
plˆa
.
p th`anh nghi
.
ch thˆe
´
trong ho´an vi
.
.
Ho´an vi
.
{α
1
, ,α
n
} du
.
o
.
.
cgo
.
il`aho´an vi
.
ch˘a
˜
n nˆe
´
usˆo
´
nghi
.
ch thˆe
´
cu
’
a n´o l`a ch˘a
˜
n v`a go
.
il`aho´an vi
.
le
’
nˆe
´
usˆo
´
nghi
.
ch thˆe
´
l`a le
’
.
3.2.2 D
-
i
.
nh th´u
.
c
Mˆo
˜
i ma trˆa
.
n vuˆong cˆa
´
p n (v`a chı
’
c´o ma trˆa
.
n vuˆong !) dˆe
`
utu
.
o
.
ng ´u
.
ng
v´o
.
imˆo
.
tsˆo
´
-go
.
il`adi
.
nh th´u
.
c cu
’
a n´o.
86 Chu
.
o
.
ng 3. Ma trˆa
.
n. D
-
i
.
nh th ´u
.
c
Gia
’
su
.
’
cho ma trˆa
.
n vuˆong cˆa
´
p n trˆen tru
.
`o
.
ng P(R, C):
A =
a
ij
n
1
=
a
11
a
12
a
1n
a
21
a
22
a
2n
.
.
.
.
.
.
.
.
.
.
.
.
a
n1
a
n2
a
nn
(3.7)
D
i
.
nh th´u
.
ccu
’
a ma trˆa
.
n A l`a mˆo
.
tsˆo
´
thu d
u
.
o
.
.
ct`u
.
c´ac phˆa
`
ntu
.
’
cu
’
a
ma trˆa
.
n theo quy t˘a
´
c sau dˆay:
1) d
i
.
nh th´u
.
ccˆa
´
p n b˘a
`
ng tˆo
’
ng d
a
.
isˆo
´
cu
’
a n!sˆo
´
ha
.
ng;
2) mˆo
˜
isˆo
´
ha
.
ng cu
’
adi
.
nh th´u
.
cl`at´ıch
a
i
1
j
1
a
i
2
j
2
···a
i
n
j
n
(3.8)
cu
’
a n phˆa
`
ntu
.
’
cu
’
a ma trˆa
.
nm`ac´u
.
mˆo
˜
i h`ang v`a mˆo
˜
icˆo
.
tdˆe
`
uc´od´ung
mˆo
.
t phˆa
`
ntu
.
’
trong t´ıch n`ay;
3) sˆo
´
ha
.
ng a
i
1
j
1
a
i
2
j
2
···a
i
n
j
n
cu
’
adi
.
nh th´u
.
c c´o dˆa
´
ucˆo
.
ng nˆe
´
u ho´an
vi
.
lˆa
.
pnˆenbo
.
’
i c´ac sˆo
´
hiˆe
.
u h`ang {i
1
,i
2
, ,i
n
} v`a ho´an vi
.
lˆa
.
pnˆenbo
.
’
i
c´ac sˆo
´
hiˆe
.
ucˆo
.
t {j
1
,j
2
, ,j
n
} l`a c`ung ch˘a
˜
n ho˘a
.
cc`ung le
’
v`a c´o dˆa
´
u
tr `u
.
(“ −”) trong tru
.
`o
.
ng ho
.
.
p ngu
.
o
.
.
cla
.
i.
K´yhiˆe
.
u: Di
.
nh th ´u
.
ccu
’
a ma trˆa
.
n A du
.
o
.
.
ck´yhiˆe
.
ul`a
det A, |A| hay
a
11
a
12
a
1n
a
21
a
22
a
2n
.
.
.
.
.
.
.
.
.
.
.
.
a
n1
a
n2
a
nn
.
Nhˆa
.
n x´et. 1) Nhu
.
vˆa
.
y, d
ˆe
’
x´ac di
.
nh dˆa
´
ucu
’
asˆo
´
ha
.
ng di
.
nh th ´u
.
cta
cˆa
`
n t´ınh
s = inv(i
1
, ,i
n
)
σ = inv(j
1
, ,j
n
)
v`a khi d
´odˆa
´
ucu
’
asˆo
´
ha
.
ng di
.
nh th´u
.
cl`adˆa
´
ucu
’
ath`u
.
asˆo
´
(−1)
s+σ
.
3.2. D
-
i
.
nh th ´u
.
c 87
2) Nˆe
´
u ta viˆe
´
t c´ac th`u
.
asˆo
´
cu
’
a t´ıch (3.8) theo th´u
.
tu
.
.
t˘ang dˆa
`
ncu
’
a
sˆo
´
hiˆe
.
u h`ang:
a
i
1
j
1
a
i
2
j
2
···a
i
n
j
n
= a
1α
1
a
2α
2
···a
nα
n
th`ı
det A =
(α
1
, ,α
n
)
(−1)
inv(α
1
, ,α
n
)
a
1α
1
a
2α
2
···a
nα
n
. (3.9)
trong d
´o t ˆo
’
ng lˆa
´
y theo mo
.
i ho´an vi
.
(α
1
,α
2
, ,α
n
)cu
’
a c´ac sˆo
´
1, 2, ,n.
Trong ma trˆa
.
n vuˆong (3.7) ta cˆo
´
d
i
.
nh k (k<n) h`ang v`a k cˆo
.
t n`ao
d´o. Gia
’
su
.
’
d
´o l`a c´ac h`ang v´o
.
isˆo
´
hiˆe
.
u i
1
<i
2
< ···<i
k
v`a c´ac cˆo
.
tv´o
.
i
sˆo
´
hiˆe
.
u j
1
<j
2
< ···<j
k
.T`u
.
c´ac phˆa
`
ntu
.
’
n˘a
`
m trˆen giao cu
’
a h`ang
v`a c´ac cˆo
.
td
u
.
o
.
.
ccho
.
n ta c´o thˆe
’
lˆa
.
pd
i
.
nh th ´u
.
ccˆa
´
p k
a
i
1
j
1
a
i
1
j
2
a
i
1
j
k
a
i
2
j
1
a
i
2
j
2
a
i
2
j
k
.
.
.
.
.
.
.
.
.
.
.
.
a
i
k
j
1
a
i
k
j
2
a
i
k
j
k
.
D
i
.
nh th´u
.
cn`ayd
u
.
o
.
.
cgo
.
il`ad
i
.
nh th´u
.
cconcˆa
´
p k cu
’
a ma trˆa
.
n A.K´y
hiˆe
.
u
M
i
1
i
2
i
k
j
1
j
2
···j
k
.
Nˆe
´
utabo
’
di c´ac h`ang th´u
.
i
1
,i
2
, ,i
k
v`a c´ac cˆo
.
tth´u
.
j
1
,j
2
, ,j
k
th`ı c´ac phˆa
`
ntu
.
’
c`on la
.
icu
’
a ma trˆa
.
n A s˜e ta
.
o th`anh mˆo
.
t ma trˆa
.
n vuˆong
cˆa
´
p n − k.Di
.
nh th´u
.
ccu
’
a ma trˆa
.
n vuˆong n`ay l`a di
.
nh th´u
.
c con cˆa
´
p
n − k cu
’
a ma trˆa
.
n A v`a d
u
.
o
.
.
cgo
.
il`aphˆa
`
nb`u(hay d
i
.
nh th´u
.
cconb`u)
cu
’
ad
i
.
nh th ´u
.
c con M
i
1
i
2
···i
k
j
1
j
2
···j
k
v`a du
.
o
.
.
ck´yhiˆe
.
ul`aM
i
1
i
2
···i
k
j
1
j
2
···j
k
.
Di
.
nh th´u
.
c con b`uv´o
.
idˆa
´
u
(−1)
(i
1
+i
2
+···+i
k
)+(j
1
+j
2
+···+j
k
)
du
.
o
.
.
cgo
.
il`aphˆa
`
nb`uda
.
isˆo
´
cu
’
adi
.
nh th ´u
.
c con M
i
1
···i
k
j
1
···j
k
.
Tru
.
`o
.
ng ho
.
.
pd˘a
.
cbiˆe
.
t: di
.
nh th´u
.
c con b`u M
ij
cu
’
adi
.
nh th´u
.
c con cˆa
´
p
1l`aa
ij
cu
’
a A du
.
o
.
.
cgo
.
i l`a phˆa
`
nb`ucu
’
a phˆa
`
ntu
.
’
a
ij
cu
’
a A v`a sˆo
´
A
ij
=(−1)
i+j
M
ij
go
.
i l`a phˆa
`
nb`uda
.
isˆo
´
cu
’
a phˆa
`
ntu
.
’
a
ij
.
88 Chu
.
o
.
ng 3. Ma trˆa
.
n. D
-
i
.
nh th ´u
.
c
3.2.3 T´ınh chˆa
´
tcu
’
adi
.
nh th´u
.
c
Di
.
nh th´u
.
c c´o c´ac t´ınh chˆa
´
t sau
I. Qua ph´ep chuyˆe
’
nvi
.
ma trˆa
.
n, d
i
.
nh th ´u
.
ccu
’
a n´o khˆong dˆo
’
i, t´u
.
c
l`a det A = det A
T
.
T`u
.
t´ınh chˆa
´
tb`ınh d
˘a
’
ng n`ay gi˜u
.
a c´ac h`ang v`a c´ac cˆo
.
tcu
’
ad
i
.
nh
th ´u
.
c suy ra r˘a
`
ng mˆo
.
tdiˆe
`
u kh˘a
’
ng di
.
nh n`ao d´o d ˜ad´ung v´o
.
i h`ang th`ı
n´o c˜ung d
´ung v´o
.
icˆo
.
t. Do d
´o c´ac t´ınh chˆa
´
ttiˆe
´
p theo dˆay chı
’
cˆa
`
n ph´at
biˆe
’
u cho h`ang.
II. Nˆe
´
ud
ˆo
’
ichˆo
˜
hai h`ang cho nhau th`ı di
.
nh th´u
.
cd
ˆo
’
idˆa
´
u.
III. Th`u
.
asˆo
´
chung cu
’
amo
.
i phˆa
`
ntu
.
’
cu
’
amˆo
.
t h`ang cu
’
ad
i
.
nh th´u
.
c
c´o thˆe
’
d
u
.
a ra ngo`ai dˆa
´
ud
i
.
nh th ´u
.
c.
IV. D
i
.
nh th´u
.
c c´o mˆo
.
t h`ang b˘a
`
ng 0 l`a b˘a
`
ng 0.
V. D
i
.
nh th ´u
.
c c´o hai h`ang giˆo
´
ng nhau l`a b˘a
`
ng 0.
VI. Nˆe
´
ud
i
.
nh th ´u
.
c c´o hai h`ang ty
’
lˆe
.
v´o
.
i nhau th`ı n´o b˘a
`
ng 0.
VII. Nˆe
´
u c´ac phˆa
`
ntu
.
’
cu
’
a h`ang th´u
.
i cu
’
adi
.
nh th´u
.
c D c´o da
.
ng
a
ij
= b
ij
+ c
iJ
, i = 1,n, j = 1,n th`ı di
.
nh th ´u
.
c D b˘a
`
ng tˆo
’
ng hai di
.
nh
th ´u
.
c D
1
+ D
2
, trong d´odi
.
nh th ´u
.
c D
1
c´o h`ang th´u
.
i l`a (b
i1
b
i2
···b
in
)
v`a di
.
nh th´u
.
c D
2
c´o h`ang th´u
.
i l`a (c
i1
,c
i2
, ,c
in
) c`on c´ac h`ang kh´ac
l`a c´ac h`ang tu
.
o
.
ng ´u
.
ng cu
’
a D.
VIII. Nˆe
´
ud
i
.
nh th´u
.
c c´o mˆo
.
t h`ang l`a tˆo
’
ho
.
.
p tuyˆe
´
n t´ınh cu
’
a c´ac
h`ang kh´ac th`ı di
.
nh th ´u
.
cb˘a
`
ng 0.
IX. D
i
.
nh th´u
.
c khˆong dˆo
’
inˆe
´
u thˆem v`ao mˆo
.
t h`ang n`ao d´omˆo
.
ttˆo
’
ho
.
.
p tuyˆe
´
n t´ınh cu
’
a c´ac h`ang kh´ac.
X. D
i
.
nh th´u
.
cb˘a
`
ng tˆo
’
ng c´ac t´ıch cu
’
a c´ac phˆa
`
ntu
.
’
cu
’
amˆo
.
t h`ang
n`ao d
´o v ´o
.
i phˆa
`
nb`uda
.
isˆo
´
tu
.
o
.
ng ´u
.
ng.
det A = a
i1
A
i1
+ a
i2
A
i2
+ ···+ a
in
A
in
=
n
j=1
a
ij
A
ij
. (3.10)
Nhˆa
.
nx´et. Ngu
.
`o
.
itac˜ung d`ung t´ınh chˆa
´
t X n`ay d
ˆe
’
l`am di
.
nh ngh˜ıa
di
.
nh th´u
.
c.
3.2. D
-
i
.
nh th ´u
.
c 89
XI. Tˆo
’
ng c´ac t´ıch cu
’
a c´ac phˆa
`
ntu
.
’
cu
’
amˆo
.
t h`ang n`ao d
´o v ´o
.
i phˆa
`
n
b`ud
a
.
isˆo
´
tu
.
o
.
ng ´u
.
ng cu
’
a c´ac phˆa
`
ntu
.
’
cu
’
a h`ang kh´ac l`a b˘a
`
ng 0:
n
j=1
a
ij
A
kj
=0, ∀k = i; i,k = 1,n.
Nhˆa
.
nx´et. C´ac t´ınh chˆa
´
t I-III l`a nh˜u
.
ng t´ınh chˆa
´
tco
.
ba
’
n. C´ac t´ınh
chˆa
´
t sau l`a nh˜u
.
ng hˆe
.
qua
’
cu
’
a ba t´ınh chˆa
´
tˆa
´
y.
3.2.4 Phu
.
o
.
ng ph´ap t´ınh d
i
.
nh th´u
.
c
I. Di
.
nh th ´u
.
ccˆa
´
p 1, cˆa
´
p2v`acˆa
´
p3du
.
o
.
.
c t´ınh theo c´ac cˆong th´u
.
c
|a
11
| = a
11
;
a
11
a
12
a
21
a
22
= a
11
a
22
− a
12
a
21
; (3.11)
a
11
a
12
a
13
a
21
a
22
a
23
a
31
a
32
a
33
= a
11
a
22
a
33
+ a
12
a
23
a
31
+ a
13
a
21
a
32
− a
13
a
22
a
31
− a
11
a
23
a
32
− a
12
a
21
a
33
.
Khi t´ınh di
.
nh th ´u
.
ccˆa
´
p 3 ta c´o thˆe
’
su
.
’
du
.
ng quy t˘a
´
c Surrus “da
.
ng
tam gi´ac” ho˘a
.
c “da
.
ng du
.
`o
.
ng song song” sau dˆay
•••
•••
•••
•••
•••
•••
(+) (−)
a
11
a
12
a
13
a
11
a
12
a
21
a
22
a
23
a
21
a
22
a
31
a
32
a
33
a
31
a
32
90 Chu
.
o
.
ng 3. Ma trˆa
.
n. D
-
i
.
nh th ´u
.
c
⊕⊕⊕
II. T´ınh di
.
nh th´u
.
ccˆa
´
p n
1
+
Khai triˆe
’
ndi
.
nh th´u
.
c theo c´ac phˆa
`
ntu
.
’
cu
’
amˆo
.
t h`ang ho˘a
.
cmˆo
.
t
cˆo
.
t (t´ınh chˆa
´
t XI, (3.10)).
2
+
Su
.
’
du
.
ng c´ac t´ınh chˆa
´
tcu
’
ad
i
.
nh th ´u
.
cd
ˆe
’
biˆe
´
ndˆo
’
idi
.
nh th´u
.
cd
˜a
cho th`anh di
.
nh th´u
.
cm´o
.
i sao cho ngoa
.
itr`u
.
mˆo
.
t phˆa
`
ntu
.
’
a
i
0
j
0
=0,tˆa
´
t
ca
’
c´ac phˆa
`
ntu
.
’
c`on la
.
icu
’
a h`ang th´u
.
i
0
(ho˘a
.
ccˆo
.
t j
0
)dˆe
`
ub˘a
`
ng 0. Khi
d´o
det A =(−1)
i
0
+j
0
a
i
0
j
0
M
i
0
j
0
.
Tiˆe
´
p theo l`a l˘a
.
pla
.
i qu´a tr`ınh d
´odˆo
´
iv´o
.
i M
i
0
j
0
l`a di
.
nh th ´u
.
ccˆa
´
p thˆa
´
p
ho
.
nmˆo
.
tdo
.
nvi
.
.
3
+
Su
.
’
du
.
ng c´ac t´ınh chˆa
´
tcu
’
adi
.
nh th ´u
.
cdˆe
’
biˆe
´
ndˆo
’
idi
.
nh th´u
.
cd˜a
cho th`anh d
i
.
nh th´u
.
c tam gi´ac (t´u
.
cl`ad
i
.
nh th´u
.
c m`a mo
.
i phˆa
`
ntu
.
’
o
.
’
mˆo
.
tph´ıa cu
’
ad
u
.
`o
.
ng ch´eo ch´ınh dˆe
`
ub˘a
`
ng 0). Khi d´odi
.
nh th´u
.
cb˘a
`
ng
t´ıch c´ac phˆa
`
ntu
.
’
trˆen du
.
`o
.
ng ch´eo ch´ınh.
4
+
Phu
.
o
.
ng ph´ap truy hˆo
`
i: biˆe
´
ndˆo
’
i, khai triˆe
’
ndi
.
nh th´u
.
c theo h`ang
ho˘a
.
c theo cˆo
.
t sao cho d
i
.
nh th ´u
.
cd
˜a cho c´o thˆe
’
biˆe
’
udiˆe
˜
n qua c´ac di
.
nh
th ´u
.
cc`ung da
.
ng nhu
.
ng cˆa
´
p thˆa
´
pho
.
n.
5
+
Biˆe
’
udiˆe
˜
ndi
.
nh th´u
.
cd˜a cho du
.
´o
.
ida
.
ng tˆo
’
ng c´ac di
.
nh th´u
.
cc`ung
cˆa
´
p.
6
+
D`ung di
.
nh l´y Laplace: Gia
’
su
.
’
trong ma trˆa
.
n vuˆong A cˆa
´
p n ta
cho
.
nmˆo
.
t c´ach t`uy ´y m h`ang (hay m cˆo
.
t) 1 m n −1. Khi d
´o d i
.
nh
th ´u
.
c det A b˘a
`
ng tˆo
’
ng c´ac t´ıch cu
’
amo
.
idi
.
nh th ´u
.
c con cˆa
´
p m n˘a
`
m trˆen
c´ac h`ang du
.
o
.
.
ccho
.
n nhˆan v´o
.
i phˆa
`
nb`uda
.
isˆo
´
tu
.
o
.
ng ´u
.
ng cu
’
ach´ung.
C
´
AC V
´
IDU
.
V´ı du
.
1. 1) T´ınh sˆo
´
nghi
.
ch thˆe
´
trong ho´an vi
.
531642
.
2) V´o
.
inh˜u
.
ng gi´a tri
.
n`ao cu
’
a i v`a j th`ı sˆo
´
ha
.
ng a
51
a
1i
a
2j
a
43
a
32
cu
’
a
di
.
nh th´u
.
ccˆa
´
p5c´odˆa
´
utr`u
.
.
3.2. D
-
i
.
nh th ´u
.
c 91
Gia
’
i. 1) Dˆe
’
t´ınh sˆo
´
nghi
.
ch thˆe
´
tiˆe
.
nlo
.
.
iho
.
nca
’
l`a tiˆe
´
n h`anh nhu
.
sau: (i) d
ˆa
`
u tiˆen, t´ınh c´o bao nhiˆeu sˆo
´
d´u
.
ng tru
.
´o
.
csˆo
´
1 (gia
’
su
.
’
c´o k
1
sˆo
´
)rˆo
`
iga
.
ch bo
’
sˆo
´
1 kho
’
i ho´an vi
.
; (ii) tiˆe
´
pdˆe
´
n t´ınh xem c´o bao nhiˆeu
sˆo
´
d´u
.
ng tru
.
´o
.
csˆo
´
2 (gia
’
su
.
’
k
2
)rˆo
`
iga
.
ch bo
’
sˆo
´
2 kho
’
i ho´an vi
.
; v.v Khi
d´o
inv(α
1
,α
2
, ,α
n
)=k
1
+ k
2
+ ···+ k
n
.
B˘a
`
ng phu
.
o
.
ng ph´ap v`u
.
anˆeudˆe
˜
thˆa
´
yl`a
inv(531642) = 2 + 4 + 1 + 2 = 9.
2) C´ac chı
’
sˆo
´
i v`a j chı
’
c´o thˆe
’
nhˆa
.
n c´ac gi´a tri
.
sau d
ˆay: (a) i =4,
j = 5; ho˘a
.
c (b) i =5v`aj =4v`ıv´o
.
i c´ac gi´a tri
.
kh´ac cu
’
a i v`a j t´ıch
d
˜a c h o c h ´u
.
a ´ıt nhˆa
´
t hai phˆa
`
ntu
.
’
cu
’
ac`ung mˆo
.
tcˆo
.
t. D
ˆe
’
x´ac di
.
nh dˆa
´
u
cu
’
asˆo
´
ha
.
ng ta s˘a
´
pxˆe
´
p c´ac th`u
.
asˆo
´
cu
’
a t´ıch theo th´u
.
tu
.
.
t˘ang cu
’
achı
’
sˆo
´
th ´u
.
nhˆa
´
trˆo
`
i t´ınh sˆo
´
nghi
.
ch thˆe
´
cu
’
a ho´an vi
.
c´ac chı
’
sˆo
´
th ´u
.
hai. Ta
c´o
a
1i
a
2j
a
32
a
43
a
51
+) Gia
’
su
.
’
i =4,j =5⇒ inv(45231) = 8. Do vˆa
.
yv´o
.
i i =4,j =5
sˆo
´
ha
.
ng d
˜a cho c´o dˆa
´
u (+).
+) Gia
’
su
.
’
i =5,j =4⇒ inv(54231) = 9. Do d´osˆo
´
ha
.
ng d˜acho
c´o dˆa
´
utr`u
.
.Vˆa
.
ysˆo
´
ha
.
ng d˜a cho chı
’
c´o dˆa
´
utr`u
.
khi i =5,j =4.
V´ı du
.
2. T´ınh c´ac d
i
.
nh th ´u
.
csaudˆay
1) ∆
1
=
000a
14
00a
23
0
0 a
32
00
a
41
000
;2)∆
2
=
1424
2336
3212
4112
92 Chu
.
o
.
ng 3. Ma trˆa
.
n. D
-
i
.
nh th ´u
.
c
Gia
’
i. 1) C´o thˆe
’
t´ınh ∆
1
b˘a
`
ng c´ach su
.
’
du
.
ng t´ınh chˆa
´
tX.
∆
1
=(−1)
1+4
a
14
00a
23
0 a
32
0
a
41
00
=(−1)
1+4
a
14
(−1)
2+3
a
23
0 a
32
a
41
0
= a
14
a
23
a
32
a
41
.
Kˆe
´
t qua
’
n`ay c˜ung c´o thˆe
’
thu du
.
o
.
.
c nh`o
.
d
i
.
nh ngh˜ıa di
.
nh th´u
.
c. Theo
d
i
.
nh ngh˜ıa ∆
1
l`a tˆo
’
ng da
.
isˆo
´
cu
’
a 4! = 24 sˆo
´
ha
.
ng, trong d´ochı
’
c´o sˆo
´
ha
.
ng
a
14
a
23
a
32
a
41
l`a kh´ac 0. V`ı ho´an vi
.
cu
’
a c´ac chı
’
sˆo
´
th ´u
.
hai ch˘a
˜
nnˆensˆo
´
ha
.
ng c´o dˆa
´
u
cˆo
.
ng. T`u
.
d´o ta thu du
.
o
.
.
c∆
1
= a
14
a
23
a
32
a
41
.
2)
´
Ap du
.
ng t´ınh chˆa
´
t XI ta c´o thˆe
’
khai triˆe
’
ndi
.
nh th´u
.
c theo cˆo
.
t
th ´u
.
nhˆa
´
t
∆
2
=1
336
212
112
−2
424
212
212
+3
424
336
112
− 4
424
336
212
=1·0 −2 ·0+3· 0 −4 ·0=0.
O
.
’
d
ˆay mo
.
idi
.
nh th´u
.
ccˆa
´
p3d
ˆe
`
u c´o hai cˆo
.
tty
’
lˆe
.
v´o
.
i nhau, nˆen ch´ung
b˘a
`
ng 0.
V´ı du
.
3. T´ınh c´ac d
i
.
nh th´u
.
c
1) ∆
1
=
1123
1231
2364
3594
, 2) ∆
2
=
201 31
−11 2 2 3
140−15
213 12
12−131
.
3.2. D
-
i
.
nh th ´u
.
c 93
Gia
’
i. Ta biˆe
´
ndˆo
’
i c´ac di
.
nh th´u
.
cd
ˆe
’
thu du
.
o
.
.
c c´ac sˆo
´
0 trong mˆo
.
t
h`ang (cˆo
.
t). Ta quy u
.
´o
.
c c´ac k´yhiˆe
.
u: h
2
− h
1
→ h
2
c´o ngh˜ıa l`a lˆa
´
y
h`ang th´u
.
hai tr`u
.
di h`ang th´u
.
nhˆa
´
tdˆe
’
thu du
.
o
.
.
c h`ang th´u
.
hai m´o
.
i.
Tu
.
o
.
ng tu
.
.
nhu
.
vˆa
.
ytak´yhiˆe
.
u c´ac ph´ep biˆe
´
ndˆo
’
i theo cˆo
.
t.
1) Ta c´o
∆
1
=
1123
1231
2364
3594
h
2
− h
1
→ h
2
h
3
−2h
1
→ h
3
h
4
−3h
1
→ h
4
=
112 3
011−2
012−2
023 5
=1·(−1)
1+1
11−2
12−2
23 5
=
11−2
12−2
23 5
h
2
− h
1
→ h
2
=
11−2
01 0
23 5
=1·(−1)
2+2
1 −2
2 −5
= −1.
2) D
ˆe
’
t´ınh ∆
2
ta thu
.
.
chiˆe
.
n ph´ep biˆe
´
ndˆo
’
i: c
1
−2c
3
→ c
1
; c
4
−3c
3
→
c
4
; c
5
− c
3
→ c
5
v`a thu du
.
o
.
.
c
∆
2
=
001 0 0
−51 2 −41
140−15
−41 3 −15
−41 3 −8 −1
32−16 2
= a
13
A
13
=1·(−1)
1+3
−51−41
14−15
−41−8 −1
326 2
D
ˆo
´
iv´o
.
idi
.
nh th´u
.
ccˆa
´
p4v`u
.
athudu
.
o
.
.
ctac˜ung tiˆe
´
n h`anh tu
.
o
.
ng tu
.
.
:
94 Chu
.
o
.
ng 3. Ma trˆa
.
n. D
-
i
.
nh th ´u
.
c
c
1
+5c
4
→ c
1
; c
2
− c
4
→ c
2
; c
3
+4c
4
→ c
3
v`a thu du
.
o
.
.
c
∆
2
=
00 0 1
26 −119 5
−92−12 −1
13 0 14 2
= a
14
A
14
=1·(−1)
1+4
26 −119
−92−12
13 0 14
Nhu
.
vˆa
.
ytad˜a d u
.
aviˆe
.
c t´ınh di
.
nh th´u
.
ccˆa
´
p5vˆe
`
t´ınh di
.
nh th´u
.
ccˆa
´
p3.
D
ˆe
’
t´ınh di
.
nh th´u
.
ccˆa
´
p 3 n`ay ta c´o thˆe
’
d`ung quy t˘a
´
c Sarrus ho˘a
.
ctiˆe
.
n
ho
.
nca
’
l`a biˆe
´
nd
ˆo
’
i n´o theo h`ang: h
2
+2h
1
→ h
2
v`a c´o
∆
2
= −
26 −119
43 0 26
13 0 14
= −a
12
A
12
= −(−1)(−1)
1+2
43 26
13 14
= −264.
V´ı du
.
4. T´ınh c´ac d
i
.
nh th´u
.
c
1) ∆
1
=
12−15
1563
−1 −235
24−28
, 2) ∆
2
=
1 −13−24
0320 1
004−1 −1
0642 3
1 −13−25
.
Gia
’
i. Ta s˜e t´ınh c´ac d
i
.
nh th ´u
.
cd˜achob˘a
`
ng phu
.
o
.
ng ph´ap du
.
avˆe
`
d
i
.
nh th´u
.
c tam gi´ac.
1) Ta c´o
∆
1
=
12−15
1563
−1 −235
24−28
h
2
− h
1
→ h
2
h
3
+ h
1
→ h
3
h
4
− 2h
1
→ h
4
=
12−15
03 7 −2
00 2 10
00 0 −2
.
V`ıd
i
.
nh th ´u
.
c tam gi´ac b˘a
`
ng t´ıch c´ac phˆa
`
ntu
.
’
trˆen du
.
`o
.
ng ch´eo ch´ınh
nˆen
∆
1
=1·3 · 2 · (−2) = −12.
3.2. D
-
i
.
nh th ´u
.
c 95
2)
∆
2
=
1 −13−24
0320 1
004−1 −1
0642 3
1 −13−25
h
4
− 2h
2
→ h
4
h
5
− h
1
→ h
5
=
1 −13−24
0320 1
004−1 −1
0002 1
0000 1
=1·3 ·4 ·2 · 1=24.
V´ı du
.
5. T´ınh c´ac d
i
.
nh th ´u
.
c
1) ∆
n
=
a
0
−10 0 00
a
1
x −10 00
a
2
0 x −1 00
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
a
n−1
000 0 −1
a
n
000 0 x
;
2) ∆
n
=
7400 00
3740 00
0374 00
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
0000 37
3) ∆
n
=
α + βαβ 0 00
1 α + βαβ 00
01α + β 00
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
000 α+ βαβ
000 1 α + β
96 Chu
.
o
.
ng 3. Ma trˆa
.
n. D
-
i
.
nh th ´u
.
c
Gia
’
i. 1) Khai triˆe
’
n∆
n+1
theo h`ang cuˆo
´
i (h`ang th´u
.
n + 1) ta c´o
∆
n+1
=(−1)
n+1
a
n
−10 0
x −1 0
.
.
.
.
.
.
.
.
.
.
.
.
00 −1
+ x
a
0
−10 0
a
1
x −1 0
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
a
n−1
00 x
D
i
.
nh th´u
.
cth´u
.
nhˆa
´
to
.
’
vˆe
´
pha
’
il`ad
i
.
nh th ´u
.
c tam gi´ac (= (−1)
n
), di
.
nh
th ´u
.
cth´u
.
hai l`a di
.
nh th´u
.
cc`ung da
.
ng v´o
.
i∆
1
nhu
.
ng cˆa
´
p n. Do vˆa
.
y
di
.
nh th´u
.
c∆
n+1
c´o thˆe
’
biˆe
’
udiˆe
˜
nbo
.
’
ihˆe
.
th ´u
.
c truy hˆo
`
i sau dˆay:
∆
n+1
= a
n
(−1)
n
(−1)
n
+ x∆
n
.
D
ˆe
’
thu du
.
o
.
.
cbiˆe
’
uth´u
.
ctˆo
’
ng qu´at cu
’
a∆
n+1
ta x´et ∆
1
v`a ∆
2
:
∆
1
= a
0
;∆
2
=
a
0
−1
a
1
x
= a
0
x −a
1
.
Nhu
.
vˆa
.
y∆
1
l`a dath´u
.
cbˆa
.
c0v´o
.
ihˆe
.
sˆo
´
a
0
, c`on ∆
2
l`a dath´u
.
cbˆa
.
c nhˆa
´
t
v´o
.
ihˆe
.
sˆo
´
a
0
v`a a
1
.
Ta ch´u
.
ng to
’
r˘a
`
ng ∆
n+1
c´o da
.
ng tu
.
o
.
ng tu
.
.
:
∆
n+1
= a
0
x
n
+ a
1
x
n−1
+ ···+ a
n
.
Gia
’
su
.
’
d˜ach´u
.
ng minh ∆
n
= a
0
x
n−1
+ ···+ a
n−1
. Khi d´o
∆
n+1
= a
n
+ x∆
n
= a
n
+ x(a
0
x
n−1
+ ···+ a
n−1
)
= a
0
x
n
+ a
1
x
n−1
+ ···+ a
n−1
x + a
n
.
2) Khai triˆe
’
nd
i
.
nh th ´u
.
c theo h`ang th´u
.
nhˆa
´
t ta thu d
u
.
o
.
.
chˆe
.
th ´u
.
c
truy hˆo
`
i:
∆
n
=7∆
n−1
− 12∆
n−2
⇒ ∆
n
− 3∆
n−1
=4∆
n−1
− 3 · 4∆
n−2
= 4[∆
n−1
−3∆
n−2
].
3.2. D
-
i
.
nh th ´u
.
c 97
T`u
.
d
´o suy ra
∆
n
− 3∆
n−1
=4
n−2
(∆
2
− ∆
1
)
∆
1
=7, ∆
2
=
74
37
=37
v`a do d
´o
∆
n
− 3∆
n−1
=4
n−2
[37 −21] = 4
n−2
· 4
2
=4
n
.
Nˆe
´
ut`u
.
hˆe
.
th ´u
.
c truy hˆo
`
i ta biˆe
´
ndˆo
’
i c´ach kh´ac th`ı thu du
.
o
.
.
c
∆
n
− 4∆
n−1
= 3[∆
n−1
−4∆
n−2
]=···=3
n−2
(∆
2
− ∆
1
)
=3
n−2
· 3
2
=3
n
.
Nhu
.
vˆa
.
y
∆
n
− 3∆
n−1
=4
n
∆
n
− 4∆
n−1
=3
n
⇒ ∆
n−1
=4
n
− 3
n
v`a do d´o
∆
n
=3∆
n−1
+4
n
=4
n+1
− 3
n+1
.
3) Ta biˆe
’
udiˆe
˜
ncˆo
.
tth´u
.
nhˆa
´
tdu
.
´o
.
ida
.
ng c´ac tˆo
’
ng hai sˆo
´
ha
.
ng α+β,
98 Chu
.
o
.
ng 3. Ma trˆa
.
n. D
-
i
.
nh th ´u
.
c
1+0,0+0, ,0 + 0 v`a viˆe
´
tdi
.
nh th ´u
.
cdu
.
´o
.
ida
.
ng tˆo
’
ng hai d
i
.
nh th´u
.
c
∆
n
=
ααβ 0 00
1 α + βαβ 00
01α + β 00
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
00 0 α+ βαβ
00 0 1 α + β
D
1
+
βαβ 0 00
0 α + βαβ 00
01α + β 00
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
00 0 α+ βαβ
00 0 1 α + β
D
2
= D
1
+ D
2
.
T´ınh D
1
.Lˆa
´
ycˆo
.
tth´u
.
hai tr `u
.
d
icˆo
.
tth´u
.
nhˆa
´
t nhˆan v´o
.
i β,lˆa
´
ycˆo
.
t
th ´u
.
ba tr `u
.
d
icˆo
.
tth´u
.
hai v`u
.
athud
u
.
o
.
.
c nhˆan v´o
.
i β, v.v Kˆe
´
t qua
’
ta
thu d
u
.
o
.
.
cdi
.
nh th ´u
.
c tam gi´ac
D
1
=
α 00 00
1 α 0 00
01α 00
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
000 α 0
000 1 α
= α
n
.
3.2. D
-
i
.
nh th ´u
.
c 99
T´ınh D
2
. Khai triˆe
’
n D
2
theo cˆo
.
tth´u
.
nhˆa
´
t ta thu d
u
.
o
.
.
c:
D
2
= β
α + βαβ 00
1 α + β 00
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
00 α+ βαβ
00 1 α + β
= β∆
n−1
.
Nhu
.
vˆa
.
ytathud
u
.
o
.
.
c cˆong th´u
.
c truy hˆo
`
i∆
n
= α
n
+ β∆
n−1
.
Ta t´ınh mˆo
.
t v`ai di
.
nh th ´u
.
cdˆa
`
u tiˆen
∆
1
= α + β =
α
2
−β
2
α −β
;
∆
2
=
α + βαβ
1 α + β
= α
2
+ αβ + β
2
=
α
3
− β
3
α −β
,
∆
3
=
α + βαβ 0
1 α + βαβ
01α + β
= α
3
+ α
2
β + αβ
2
+ β
4
=
α
4
− β
4
α − β
;
Ta s˜e ch´u
.
ng minh r˘a
`
ng hˆe
.
th ´u
.
c
∆
m
=
α
m+1
−β
m+1
α −β
· (*)
d´ung v´o
.
i m ∈ N bˆa
´
tk`y. Ta ´ap du
.
ng phu
.
o
.
ng ph´ap quy na
.
p to´an ho
.
c.
Gia
’
su
.
’
(∗)d´ung v´o
.
i m = n−1. Ta ch´u
.
ng minh n´o d´ung v´o
.
i m = n.
Khi m = n − 1 ta c´o
∆
n−1
=
α
n
−β
n
α −β
⇒
∆
n
= α
n
+ β
α
n
− β
n
α −β
=
α
n+1
−α
n
β + α
n
β − β
n+1
α −β
=
α
n+1
− β
n+1
α −β
·
100 Chu
.
o
.
ng 3. Ma trˆa
.
n. D
-
i
.
nh th ´u
.
c
Nhu
.
vˆa
.
yhˆe
.
th ´u
.
c(∗)d
´ung ∀m ∈ N.Dod´o
∆
n
=
α
n+1
− β
n−1
α −β
·
B
`
AI T
ˆ
A
.
P
1. X´ac d
i
.
nh sˆo
´
nghi
.
ch thˆe
´
trong c´ac ho´an vi
.
.
1) (1 3 5 7 9 2 4 6 8). (D
S. 10)
2) (9 8 7 6 5 4 3 2 1). (D
S. 36)
3) (2 5 8 1 4 7 3 6 9). (D
S. 12)
4) (7 5 4 6 1 2 3 9 8). (D
S. 17)
2. Cho
.
n k v`a sao cho ho´an vi
.
1) (7 4 3 k8 5 2) l`a ho´an vi
.
le
’
.(D
S. k =6, =1)
2) (k 347 2 6 5) l`a ho´an vi
.
ch˘a
˜
n. (D
S. k =8, =1)
3) (4 8 k 25 1 7) l`a ho´an vi
.
ch˘a
˜
n. (D
S. k =6, =3)
4) (6 3 4 k 7 2 1) l`a ho´an vi
.
le
’
.(D
S. k =5, =8)
3. X´ac di
.
nh sˆo
´
nghi
.
ch thˆe
´
trong c´ac ho´an vi
.
.
1) nn− 1 n − 2 2 1. (DS.
n(n − 1)
2
)
2)1357 2n − 1246 2n.(D
S.
n(n − 1)
2
)
3)246 2n 135 2n −1. (D
S.
n(n +1)
2
)
4) 2n − 12n −3 5312n 2n − 2 6 4 2. (D
S.
3n(n − 1)
2
)
4. Trong c´ac t´ıch sau d
ˆay, t´ıch n`ao l`a sˆo
´
ha
.
ng cu
’
adi
.
nh th´u
.
ccˆa
´
p7;
x´ac di
.
nh dˆa
´
ucu
’
asˆo
´
ha
.
ng d´o.
1) a
43
a
53
a
63
a
15
a
23
a
34
a
71
.(DS. Khˆong pha
’
i)
2) a
23
a
67
a
54
a
16
a
35
a
41
a
72
.(DS. Sˆo
´
ha
.
ng c´o dˆa
´
ucˆo
.
ng)
3) a
15
a
28
a
74
a
36
a
61
a
43
.(DS. Khˆong pha
’
i)
4) a
72
a
16
a
33
a
55
a
27
a
61
a
44
.(DS. Sˆo
´
ha
.
ng c´o dˆa
´
ucˆo
.
ng)
3.2. D
-
i
.
nh th ´u
.
c 101
5. Trong c´ac t´ıch sau dˆay, t´ıch n`ao l`a sˆo
´
ha
.
ng cu
’
adi
.
nh th´u
.
ccˆa
´
ptu
.
o
.
ng
´u
.
ng x´ac d
i
.
nh dˆa
´
ucu
’
asˆo
´
ha
.
ng d´o.
1) a
43
a
61
a
52
a
13
a
25
a
34
.(DS. Khˆong pha
’
i)
2) a
27
a
63
a
14
a
56
a
35
a
41
a
72
.(DS. L`a sˆo
´
ha
.
ng cu
’
adi
.
nh th´u
.
ccˆa
´
p7
v´o
.
idˆa
´
u+)
3) a
15
a
28
a
75
a
36
a
81
a
43
.(DS. Khˆong pha
’
i)
4) a
n1
a
n−12
a
1n
.
(D
S. L`a sˆo
´
ha
.
ng cu
’
adi
.
nh th´u
.
ccˆa
´
p n v´o
.
idˆa
´
u(−1)
n(n−1)
2
)
5) a
12
a
23
a
k,k+1
a
n−1,n
a
n1
.
(D
S. L`a sˆo
´
ha
.
ng cu
’
adi
.
nh th´u
.
ccˆa
´
p n v´o
.
idˆa
´
u(−1)
n−1
)
6) a
13
a
24
a
35
a
n−2,n
a
n−1,1
a
n2
.
(D
S. Sˆo
´
ha
.
ng cu
’
adi
.
nh th ´u
.
ccˆa
´
p n v´o
.
idˆa
´
u “+”)
6. X´ac di
.
nh c´ac sˆo
´
k v`a sao cho trong di
.
nh th´u
.
ccˆa
´
p6:
1
+
C´ac t´ıch sau l`a sˆo
´
ha
.
ng cu
’
a n´o v´o
.
idˆa
´
u“−”:
1) a
62
a
35
a
k3
a
44
a
6
a
21
.(DS. k =5, =1)
2) a
1k
a
25
a
44
a
6
a
52
a
31
.(DS. k =6, =3)
2
+
C´ac t´ıch sau l`a sˆo
´
ha
.
ng c´o dˆa
´
u+:
3) a
63
a
16
a
5
a
45
a
2k
a
31
.(DS. k =2, =4)
4) a
k5
a
21
a
34
a
13
a
6
a
62
.(DS. k =5, =4)
7. Trong d
i
.
nh th´u
.
ccˆa
´
p n
1) t´ıch c´ac phˆa
`
ntu
.
’
cu
’
adu
.
`o
.
ng ch´eo ch´ınh l`a sˆo
´
c´o dˆa
´
ug`ı?
(D
S. +)
2) t´ıch c´ac phˆa
`
ntu
.
’
cu
’
adu
.
`o
.
ng ch´eo phu
.
c´o dˆa
´
ug`ı?
(D
S. C´o dˆa
´
u “+” nˆe
´
u n =4k ho˘a
.
c n =4k + 1; v`a c´o dˆa
´
u“−”
nˆe
´
u n =4k + 2 ho˘a
.
c n =4k +3)
8. T´ınh c´ac di
.
nh th´u
.
ccˆa
´
p hai:
1)
a
2
ab
ab b
2
2)
a
2
+ ab + b
2
a
2
− ab + b
2
a + ba−b
3)
cos α −sin α
sin α cos α
4)
sin α cos α
sin β cos β
102 Chu
.
o
.
ng 3. Ma trˆa
.
n. D
-
i
.
nh th ´u
.
c
5)
1 log
b
a
log
a
b 1
6)
a + bi c + di
−c + di a −bi
; i
2
− 1.
7)
(1 −t)
2
1+t
2
2t
1+t
2
2t
1+t
2
−
(1 + t)
2
1+t
2
8)
εε
−1 ε
, ε = cos
2π
3
+ i sin
2π
3
.
(DS. 1) 0; 2) −2b
3
; 3) 1; 4) sin(α − β); 5) 0; 6) a
2
+ b
2
+ c
2
+ d
2
;
7) −1; 8) −1)
9. T´ınh c´ac d
i
.
nh th ´u
.
ccˆa
´
pba
1)
321
253
343
2)
abc
bca
cab
3)
cos α sin α cos β sin α sin β
−sin α cos α cos β cos α sin β
0 −sin β cos β
.
4)
1 i 1+i
−i 10
1 −i 01
; i
2
= −1, 5)
a
2
+1 ab ac
ab b
2
+1 bc
ac bc c
2
+1
6)
sin α cos α 1
sin β cos β 1
sin γ cos γ 1
7)
11ε
11ε
2
ε
2
εε
, ε = cos
2π
3
+ i sin
2π
3
8)
a + bc1
b + ca1
c + ab1
(D
S. 1) 8; 2) 3abc − a
3
− b
3
− c
3
; 3) 1; 4) −2; 5) 1 + a
2
+ b
2
+ c
2
;
6) sin( α − β) + sin(β −γ) + sin(γ − α); 7) −3; 8) 0)
3.2. D
-
i
.
nh th ´u
.
c 103
10. T´ınh di
.
nh th´u
.
c Vandermonde
1
1111
abcd
a
2
b
2
c
2
d
2
a
3
b
3
c
3
d
3
(D
S. (b −a)(c − a)( d − a)(c −b)(d −b)(d −c))
Chı
’
dˆa
˜
n. Lˆa
´
y c´ac cˆo
.
ttr`u
.
dicˆo
.
tth´u
.
nhˆa
´
trˆo
`
i khai triˆe
’
ndi
.
nh th´u
.
c
thu d
u
.
o
.
.
c theo h`ang th´u
.
nhˆa
´
t v`a tiˆe
´
ptu
.
cnhu
.
vˆa
.
yd
ˆo
´
iv´o
.
id
i
.
nh th´u
.
c
cˆa
´
p ba.
11. T´ınh d
i
.
nh th´u
.
c
11100
12300
01111
0 x
1
x
2
x
3
x
4
0 x
2
1
x
2
2
x
2
3
x
2
4
(D
S. (x
3
− x
2
)(x
4
− x
2
)(x
4
−x
3
) −2(x
3
−x
1
)(x
4
− x
1
)(x
4
− x
3
))
Chı
’
dˆa
˜
n. D`ung di
.
nh l´y Laplace cho h`ang th´u
.
nhˆa
´
t v`a th´u
.
hai v`a
chı
’
dˆa
˜
n cho b`ai 10.
12. T´ınh di
.
nh th ´u
.
cb˘a
`
ng c´ach khai triˆe
’
n (theo c´ac phˆa
`
ntu
.
’
cu
’
a h`ang
ho˘a
.
ccˆo
.
t):
1)
a 305
0 b 02
12c 3
000d
.(D
S. abcd)
2)
111a
221b
321c
123d
theo c´ac phˆa
`
ntu
.
’
cˆo
.
tth´u
.
tu
.
.
1
A. T. Vandermonde (1735-1796) l`a nh`a to´an ho
.
c Ph´ap.
104 Chu
.
o
.
ng 3. Ma trˆa
.
n. D
-
i
.
nh th ´u
.
c
(DS. 4a −c −d)
3)
a 111
b 011
c 101
d 110
theo c´ac phˆa
`
ntu
.
’
cu
’
acˆo
.
tth´u
.
nhˆa
´
t.
(D
S. 2a + b −c + d)
4)
12−12
2 −1 −21
abcd
−2 −112
theo c´ac phˆa
`
ntu
.
’
cu
’
a h`ang th´u
.
ba.
(D
S. −5a −5b −5c −5d)
5)
235−4
3 −54 2
−42 3 5
54−23
theo c´ac phˆa
`
ntu
.
’
h`ang th´u
.
hai.
(D
S. −2858)
6)
−51−41
14−15
−41−8 −1
326 2
theo c´ac phˆa
`
ntu
.
’
h`ang th´u
.
nhˆa
´
t
(D
S. −264)
13. D`ung d
i
.
nh ngh˜ıa dˆe
’
t´ınh c´ac di
.
nh th´u
.
c sau
1)
100
221
332
.(DS. 1)
2)
log
b
a 10
020
2 1 log
a
b
.(DS. 1)
3.2. D
-
i
.
nh th ´u
.
c 105
3)
1002
3004
0560
0780
.(D
S. 4)
4)
0034
0043
1200
2100
.(D
S. −21)
5)
a
1
00 0
a
1
a
1
0 0
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
a
n
a
n−1
a
n−2
a
1
.(DS. a
n
1
)
6)
0 00−1
0 0 −20
0 −30 0
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
−n 000
.(D
S. (−1)
n(n+1)
2
n!)
7)
1 aa a
02a a
003 a
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
000 n
.(D
S. n!)
8)
0 00a
1
0 0 a
2
a
1
0 a
3
a
2
a
1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
a
n
a
3
a
2
a
1
.(D
S. (−1)
n(n−1)
2
a
1
a
2
a
n
)
106 Chu
.
o
.
ng 3. Ma trˆa
.
n. D
-
i
.
nh th ´u
.
c
9)
2104
−1204
−2305
−3406
.(D
S. 0)
10)
12121
11111
23000
32000
12000
.(D
S. 0)
14. Gia
’
i c´ac phu
.
o
.
ng tr`ınh
1)
1 144
−13−x
2
33
7 755
−7 −76x
2
− 3
= 0. (DS. x
1,2
= ±3; x
3,4
= ±3)
2)
12 34
−22− x 17
364+x 12
−4 x − 14 2 3
= 0. (D
S. x
1
=6;x
2
=5)
3)
1 xx
2
x
3
12 4 8
13 9 27
1 4 16 64
= 0. (DS. x
1
=2,x
2
=3,x
3
=4)
15. T´ınh c´ac di
.
nh th ´u
.
ccˆa
´
p n
1)
223 n
−10 3 n
−1 −20 n
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
−1 −2 −3 0
.(D
S. n!)
Chı
’
dˆa
˜
n. Thˆem h`ang th´u
.
nhˆa
´
t v`ao mo
.
i h`ang cu
’
adi
.
nh th´u
.
cb˘a
´
t
3.2. D
-
i
.
nh th ´u
.
c 107
dˆa
`
ut`u
.
h`ang th´u
.
hai.
2)
122 2
222 2
223 2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
222 n
.(D
S. −2(n − 2)!)
Chı
’
dˆa
˜
n. Lˆa
´
ymo
.
i h`ang (kˆe
’
t`u
.
h`ang th´u
.
ba) tr`u
.
di h`ang th´u
.
hai,
sau d´o l ˆa
´
y h`ang th´u
.
hai tr `u
.
di h`ang th´u
.
nhˆa
´
t nhˆan v´o
.
i2.
3)
xa
1
a
2
a
n−1
1
a
1
xa
2
a
n−1
1
a
1
a
2
x a
n−1
1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
a
1
a
2
a
3
x 1
a
1
a
2
a
3
a
n
1
.(D
S. (x−a
1
)(x−a
2
) ···(x−a
n
))
Chı
’
dˆa
˜
n. Lˆa
´
ytˆa
´
tca
’
c´ac cˆo
.
tcu
’
ad
i
.
nh th´u
.
ctr`u
.
d
icˆo
.
t cuˆo
´
ic`ung
nhˆan tu
.
o
.
ng ´u
.
ng v´o
.
i a
1
,a
2
, ,a
n
.
4)
011 1
101 1
110 1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
111 0
n×n
.(DS. (−1)
n−1
(n −1))
Chı
’
dˆa
˜
n. Thˆem cho cˆo
.
tth´u
.
nhˆa
´
ttˆa
´
tca
’
c´ac cˆo
.
t c`on la
.
i; sau d´o l ˆa
´
y
mo
.
i h`ang kˆe
’
t`u
.
h`ang th´u
.
hai tr`u
.
di h`ang th´u
.
nhˆa
´
t.
5)
1 nn n
n 2 n n
nn3 n
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
nnn n
.(D
S. (−1)
n
n!)
Chı
’
dˆa
˜
n. Lˆa
´
y c´ac h`ang th´u
.
nhˆa
´
t, th´u
.
hai, th´u
.
n−1tr`u
.
d
i h`ang
th ´u
.
n.