Tải bản đầy đủ (.pdf) (9 trang)

Luận văn : XÂY DỰNG CƠ SỞ DỮ LIỆU HAI GENE HSP-70 và REVERSE TRANSCRIPTE-RNaseH Ở MỘT SỐ LOÀI VIRUS THỰC VẬT part 4 ppsx

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (722.16 KB, 9 trang )

16




Các tổ chức này đều xây dựng công cụ tìm kiếm trong CSDL của họ. Với
NCBI là Entrez, EBI là SRS và CIB là getentry. Nhƣ vậy để có thể khai thác hiệu quả
các CSDL này thì việc đầu tiên cần thực hiện là nắm vững các hoạt động của công cụ
tìm kiếm (“search engines”) này.
Ngoài ra, cũng có sự kết hợp của các CSDL protein trên thế giới để tạo ra một
CSDL thống nhất wwPDB (world wide Protein Database).










EB
I

GenBank
DDBJ
EMB
L
E
E
M


M
B
B
L
L


Entrez
SRS
getentry
N
N
I
I
G
G


CI
B
NCB
I
N
N
I
I
H
H



•Submissions
•Updates
•Submissions
•Updates
•Submissions
•Updates




Hình 2.4 Ba cơ sở dữ liệu nucleotide (GenBank – EMB -DDB) và
công cụ tìm kiếm tƣơng ứng.

Hình 2.5 Sự hợp nhất của ba cơ sở dữ liệu MSD, PDBj, PDB
17

Bảng 2.1. MỘT SỐ CSDL SINH HỌC LỚN VÀ CÁC ĐỊA CHỈ WEB TƢƠNG ỨNG.








STT
Tổ chức
Tên cơ sở dữ
liệu
Địa chỉ trang web

1
EBI
(http://w
ww.ebi.a
c.uk/)

EMBL-BANK

TrEMBL

MSD

Ensembl

ArrayExpress

2
NCBI
(http://w
ww.ncbi.
nlm.nih.
gov)
OMIM

GenBank

Protein

Genome


MMDB

Taxonomy

dbSNP

CDD

Pubmed

Cancer
Chromosomes

Chromosomes
dbEST

dbSTS

DbGSS

18

Bảng 2.2. MỘT SỐ CSDL SINH HỌC LỚN VÀ CÁC ĐỊA CHỈ WEB TƢƠNG ỨNG
(tiếp theo)


2.4. VIRUS CAULIMOVIRIDAE VÀ CLOSTEROVIRIDAE
Giới thiệu chung [1]
Bệnh hại do virus thực vật gây ra cho nền nông nghiệp rất lớn. Nhƣng xác
định đúng tác nhân gây ra những thiệt hại này đối với từng loại cây trồng gặp nhiều

khó khăn vì bệnh do virus gây ra thƣờng rất khó xác định, do kích thƣớc của chúng
quá bé, do biến chuyển của quá trình gây bệnh thƣờng rất phức tạp và chịu ảnh hƣởng
của nhiều điều kiện khác nhau.
Ví dụ: Theo J.S.Hu và cộng sự, bệnh héo do virus (Mealybug wilt of
pineapple- MWP) là bệnh gây thiệt hại ở nhiều khu vực trồng dứa trên thế giới. Các
nghiên cứu đã chứng minh rằng một yếu tố tiềm tàng liên quan đến bệnh là virus. Một
dạng closterovirus hình que gấp khúc đƣợc phân lập từ những cây có triệu chứng
MWP ở Hawaii. Tuy nhiên sau đó những tiểu phần closterovirus cũng đƣợc tìm thấy ở
cả cây dứa có và không có thể hiện triệu chứng trên phạm vi thế giới. Virus liên quan
đến bệnh héo ở dứa (PMWaV) thực chất là phức hợp của 2 loại virus PMWaV-1 và
PMWaV-2. Vì tác nhân không biểu hiện ra ngoài không gây ảnh hƣởng đến sự sinh
trƣởng và phát triển của dứa, để phát hiện phân biệt hai tác nhân này ở những cây
không và có biểu hiện ra ngoài là rất khó khăn.
STT
Tổ chức
Tên cơ sở dữ liệu
Địa chỉ trang web
3
SIB
(
asy.org)
SWISS-PROT

SWISS-2DPAGE

PROSITE

ENZYME

SWISS-3DIMAGE


CD40L

4
CIB/DDBJ
DDBJ

5
Pdbj
Pdbj

6
PDB
PDB

7
wwPDB
wwPDB

19

Trong đó:
ORF I Movement protein
ORF II Insect transmission factor
ORF III
ORF IV Capsid protein
ORF V Protease, reverse transcriptase and RNaseH
ORF VI Translational activator / Inclusion body protein
ORF VII Unknown (dispensable)


Hình 2.6 Tổ chức genome của virus CaMV (Caulimoflower mosaic virus)
2.4.1. CAULOMOVIRIDAE [29]
2.4.1.1. Khái quát
Caulimoviriruse là họ virus thực vật có genome chứa dsDNA. Đƣợc chia ra
làm năm nhóm gồm:
 Caulimovirus (loài đặc trƣng: cauliflower mosaic virus).
 Soymovirus (loài đặc trƣng: Soybean chlorotic mottle-like viruses).
 Cavemovirus (loài đặc trƣng: Cassava vein mosaic-like viruses).
 Tungrovirus (loài đặc trƣng: Rice tungro bacilliform-like viruses).
 Badnavirus (loài đặc trƣng: Cammelina yellow mottle virus).
 Petuvirus (loài đặc trƣng: Petunia vein clearing-like virus).
Trong đó, Virion của các loài Caulimovirus, Soymovirus, Cavemovirus,
Petuvirus có đƣờng kính khoảng 50 nm. Còn Tungrovirus và Badnavirus có chiều dài
110-400 và 130 nm, đƣờng kính khoảng 30-35 và 30-35 nm tƣơng ứng. Các loài trong
họ có kích thƣớc genome khoảng 7,5-8 kb và tổ chức genome gồm 9 ORF (Open
Reading Frame) trong ORF1 gồm có ORF1a và ORF1b). Sự sao mã genome của virus
trong tế bào ký chủ phụ thuộc vào gene reverse transcriptase (gene này không chèn
vào DNA của tế bào ký chủ trong quá sao mã và dịch mã)
















20


2.4.1.2. Cấu tạo
Virion có cấu trúc đơn giản gồm một lớp vỏ capsid. Viron không có áo
(enveloped) bao bọc bên ngoài. Capsid có hình cầu hoặc dạng bacilliform. Ở dạng cầu
có đƣờng kính khoảng 35-47.52-50 nm. Các lớp vỏ (shell) capsid của virion là tổ hợp
của những màng đa, sự sắp xếp của capsomer không có sự phân biệt. Còn ở dạng
bacilliform thì capsid có độ dài 130 nm hoặc 60-900 nm và có đƣờng kính 24-30-35
nm.









2.4.1.3. ĐẶC TÍNH SINH HỌC
 Dãy ký chủ tự nhiên
Ký chủ của virus liên quan đến Domain Eucarya.
 Mối quan hệ vector và ký chủ trung gian
Virus có thể đƣợc vận chuyển bởi một số nhân tố sau: vector, hạt,
phấn hoa, sự cọ sát giữa hai ký chủ,…
 Vùng phân bố
Phân bố khắp nơi nhƣ châu Phi, Mỹ, Á,…

2.4.1.4. Cơ chế xâm nhiễm và sao mã trong tế bào ký chủ [18]
Virus tấn công vào tế bào ký chủ thông qua các thụ thể trên màng, khi vào tế
bào ký chủ tiến hành cởi bỏ lớp vỏ, phóng thích dsDNA vào tế bào chất của tế bào ký
chủ. Sợi dsDNA này tiến hành đi vào nhân của tế bào ký chủ, sau đó nó tiến hành nhân
bản trong nhân và sao mã tạo mRNA dƣới sự tham gia của các enzyme của nhân và
virus (DNA-dependent RNA polymerase). mRNA này từ nhân đi ra tế bào chất của tế
bào ký chủ để thực hiện việc dịch mã. Các protein của sự dịch mã mRNA virus lại trở
Hình 2.7 Hình thái virion của một số loài trong họ Caulimoviridae
21


Hình 2.8 Cơ chế nhân bản, sao mã và dịch mã vào tế bào ký chủ của
virus dsDNA
lại nhân, kết hợp với sản phẩm của quá trình nhân bản, để hình thành nên các virion,
các virion này thoát khỏi nhân và cuối cùng ly giải ra khỏi tế bào ký chủ (Hình 2.8).
















2.4.2. CLOSTEROVIRIDAE
2.4.2.1. Khái quát [12]
Closteroviridae cũng là họ virus gây hại trên thực vật, có bộ genome là
ssRNA và virion có hình dạng sợi tròn mảnh (flexuous rod-shaped virion), có độ dài
khoảng 1250-2200 nm chứa một sợi sense dƣơng, kích thƣớc của một RNA sợi đơn
khoảng 15,5-19.3 kb (Martelli và cộng sự, 2002). Đƣợc chia ra làm 3 nhóm gồm:
 Ampelovirus (loài đặc trƣng: Grapevine leafroll-associated virus 3).
 Closterovirus (loài đặc trƣng: Beet yellows virus).
 Crinivirus (loài đặc trƣng: Lettuce infectious yellows virus).
2.4.2.2. Cấu tạo [30]
Virion có cấu tạo đơn giản gồm có một lớp vỏ (capsid), không có lớp áo
(enveloped) bao bên ngoài. Capsid của nó rất mảnh, có độ dài khoảng 650-900 hoặc
1200-2325 nm và có đƣờng kính khoảng 10-13 nm.



22


Hình 2.9 Hình thái virion của Citrus tristeza virus thuộc Closterovirus







2.4.2.3. Cơ chế xâm nhiễm và sao mã trong tế bào ký chủ [18]
Thông qua các thụ thể trên màng của tế bào ký chủ, virus nhận biết và tấn
công vào vào tế bào ký chủ để đi vào tế bào chất của tế bào ký chủ. Khi ở trong tế bào

chất virus tiến hành sự hóa acid thể nhân (acidification of endosome) để tạo ra sợi
single strand RNA sense (+). Ở trong tế bào chất, mRNA này có hai nhiệm vụ là:
 Thực hiện việc dịch mã ra protein virus, protein này sau đó đƣợc biến đổi để
hình thành nên các protein cấu trúc của virus
 Sao mã genome của virus tiếp đó tạo nên sợi single strand RNA (ssRNA).
Các protein cấu trúc đƣợc hình thành sẽ “gói” các ssRNA ở trên để hình thành các
virion trong tế bào chất, sau đó ly giải màng tế bào ký chủ và phóng thích ra ngoài.
(hình 2.10).















Hình 2.10 Cơ chế nhân bản, sao mã và dịch mã vào tế bào ký chủ của virus (+)ssRNA

23


2.5. Gene Hsp-70 và Reverse transcriptase-RNaseH
Mụch tiêu của khóa luận là xây dựng CSDL phục vụ cho việc phân biệt các loài

trong họ hay phân biệt các họ với nhau thông qua phản ứng PCR phát hiện. Nên chúng
tôi chỉ quan tâm đến vùng gene bảo tồn để tiến hành xây dựng CSDL. Mặc dù, trong
hai họ virus này có nhiều gene bảo tồn, nhƣng sau khi tìm hiểu thông tin chúng tôi tiến
hành xây dựng CSDL về hai gene hsp-70 và RT-RnasH với hai lý do sau:
Thứ nhất, gene hsp-70 là gene quan trọng ở Closteroviridae khi tồn tại trong môi
trƣờng sốc nhiệt và gene Reverse Transcriptase-RNaseH (RT-RNaseH) ở
Caulimoviridae thuộc nhóm Retrovirus nên gene RT-RNaseH rất quan trọng cho quá
trình hoàn thành chu kỳ sống của chúng trong tế bào ký chủ.
Thứ hai, các thông tin về trình tự hai gene này đƣợc nghiên cứu, giải trình tự và
đăng tải nhiều trên CSDL nucleotide của NCBI.
2.5.1. Gene Reverse transciptase-RnasH (RT-RNaseH)
2.5.1.1. Vị trí gene RT-RNaseH nằm trong genome [15, 16]
Gene RT-RNaseH đây là tổ hợp của hai gene RT và RNaseH mã hóa cho
enzyme reverse transcriptase và ribonuclease H (RNaseH) thuộc ORF5 trong tổ chức
genome của Cauliflower mosaic virus. Đây là hai gene có mối quan hệ chặt chẽ trong
quá trình thực hiện sao chép từ ssRNA sang dsDNA của quá trình tạo genome hoàn
chỉnh của virus. Ngoài ra, trong ORF5 này còn chứa một số gene khác mã hóa cho một
số polyprotein khác nhƣ aspartic protease, protein áo,… Còn một số thành viên khác
thuộc giống Badnavirus thì gene này nằm trong ORF3. Gene RT-RNaseH bảo tồn
trong họ mã hóa cho protein reverse transcriptase-RNaseH, đây là một trong những
protein bảo tồn trong họ virus Caulimoviridae.




2.5.1.2. Chức năng của protein [31]
Đối với các loài virus có tổ chức genome là dsDNA trong quá trình sao mã
trong tế bào ký chủ, chúng sử dụng enzyme Reverse transcriptase-RNaseH để hoàn
thành chu kỳ sao mã của chúng.
Protein Reverse transcriptase-RNaseH có hai chức năng:

 DNA polymerase: Trong chu kỳ sống của virus reverse transcriptase chỉ
sao chép RNA. Nó sẽ sao mã cả khuân mẫu RNA và DNA sợi đơn. Trong
cả hai trƣờng hợp này nó điều cần những primer RNA hoặc DNA để khởi
đầu cho sự tổng hợp của nó.
Hình 2.11 Vị trí gene RT-RNaseH nằm trong cấu trúc genome Cauliflower mosaic virus (CMV)
24

Hình 2.13 Vị trí gene hsp-70 nằm trong tổ chức genome của Beet yellows virus (BYV)

Hình 2.12 Protein Reverse transcriptase
 RNase H: là một ribonuclease, enzyme này có chức năng phân tách RNA
từ những RNA-DNA lai, RNA-DNA lai này đƣợc hình thành trong quá trình
sao mã ngƣợc của đoạn khuôn mẫu RNA. RNase H hoạt động có hai tính
năng endonuclease và exonuclease trong quá trình phân tách RNA-DNA lai.






2.5.2. Gene hsp-70
2.5.2.1. Vị trí gene hsp-70 nằm trong genome [13, 17]
Gene hsp-70 mã hóa cho enzyme HSP-70 thuộc ORF2 trong tổ chức genome
(gồm có 9 ORF nằm trong 2 RNA là RNA1 và RNA2) và gene này thuộc RNA2 của
họ Closteroviridae. Đây là gene bảo tồn trong họ và nhiều nghiên cứu tiến hành xây
dựng cây phát sinh loài dựa trên gene này.


2.5.2.2. Chức năng [10]
Protein HSP-70 (hình 2.14), trọng lƣợng phân tử 70 kD đƣợc mã hóa từ gene

hsp-70 có vai trò quan trọng trong quá trình tồn tại của sinh vật trong môi trƣờng có sự
thay đổi đột ngột về nhiệt độ. Ngoài ra, protein HSP-70 còn tham gia vào một số quá
trình điều hòa quan trọng khác nhƣ: giúp sự hình thành cấu của protein, giúp di chuyển
của virus qua các tế bào ký chủ,…Đây là protein bảo tồn trong họ.





Hình 2.14 Protein HSP-70




×