!"#"
$%&'()
*+, 120 phút, không kể giao đề
/&'()0&'1%-2%34"56&7
8&'(-94)&:;%-
<=5>?(@47
x − =
x x− − =
!"#
a a a a
N
a a
+ −
= + × −
÷ ÷
÷ ÷
+ −
$%≥$≠
<="5"?(@47
&'()*#+,-./012#345()678394#:()#;<#'
=3 #>'3?8
+
()!,@3 5
x y m
x y
+ =
− = −
#>5.A,BC3DE.
/.,-
<=>5?(@47
F'E7'=#6?.G,,.'H?I!J2''?I!,
340K7EL#56M,.G3C,3N#O!P?I!J2'('$%()?I!J
2','?,F'E7'=#0Q76.G3C'E7'=#%#,0
RBF'E7'=#6M,.G,.''@!?I!J2'S
<=A5>?(@47
&'2#TU&?73VW0&2#3#'UX$&Y#:2#TU&#;
!=R$#;3VWJN=XZ$YZXZE2#U$YZE2#&0
&""2#U&XY"2#?7
&"XY('('$%XZYZ
[\W]$!^>#$%U&]∈U&0K_$!^>#$%R]=R#;3_
TU=`$#;3_T&=a0&"2#]`a#b0
<=B5?(@47
&'66#6c#2#()cBC
a b+ =
$
a b
c d c d
+ =
+
&"8
a d
c b
+ ≥
dddddddddddddddddddddddR7ddddddddddddddddddddddd
R@e(00000000000000000000000000000000000000000000000000000000000000000f)2'c
&gEh#:240000000000000000000000000000000000000000000000000000&gEh#:24
!"#"
$%&'()120 phút
Ngày thi: 06 tháng 07 năm 2010 (Đợt 1)
<=5>?(@47
x − =
i
x⇔ = = × =
Q*,5#:.-i
x x− − =
Kj.
- ≥
( )
A t t t Loai t⇔ − − = ⇒ = − =
Q%
t x x= ⇔ = ⇒ = ±
Q*,*5#:f-kdAl
!"#
a a a a
N
a a
+ −
= + × −
÷ ÷
÷ ÷
+ −
$%≥$≠
( ) ( )
a a a a
N
a a
+ −
= + × −
+ −
( ) ( )
a a= + −
m a= −
<="5"?(@47
&'()*#+,-./012#345()678394#:()#;<#'
=3 #>'3?8
+
K94#:()#;<#'=3 #>'3?8
+
⇔3I!3
+
A
⇒0
+
/-⇒
a
−
= = −
+
()!,@3 5
x y m
x y
+ =
− = −
#>5.A,BC3DE.
/.,-
F'3N#5
x m= −
A
y m= +
K .
/.,- ⇔
( ) ( ) ( )
m m m− + − + =
⇔
m m− − =
⇒
P
m Z= ∉
A
m Z= − ∈
Q*,
m Z= − ∈
#>5dPAdBC.
/.,-dP
/dPd-
<=>5?(@47
.()?I!J2'.G,',F'E7'=#.n
⇒(),'E7'=#
H
x
,
L#7M,.G3C,3N#./P?I!J2'
⇒(),L#73C
H
Px +
F'.G3>'E7'=#%#,@#>
H H
Px x
− =
+
H H Px x x x⇔ + − = +
P x x⇔ + − =
P
x
x loai
=
⇒
= − <
Q*,F'E7'=#6M,.G,.'P?I!J2'
N
M
H
I
E
F
F'
E'
O
A
B
C
A'
<=A5>?(@47
#[\3EeTTo
URDDTo&#p$!^>#T&
&RDDToU#p$!^>#TU
"2#ToUR&
W]$!^>#$%U&]!3 #:U&
]!3 #:ToR6,R6]6To_
&"#2#"2#ToU`R$To&aR?
7
>#`ToR->#`UR$>#aToR->#
a&R6>#`UR->#a&R"2#U&XY?
7
>#`ToR->#aToR
ToR$!^>#$%`a
2#To`a#b=To
q$2#]`a#b=]0
<=B5?(@47
C
a b+ =
a b a b + + =
C
a b
c d c d
+ =
+
( ) ( )
( )
0 a d c d b c c d cd cd a b a b + + + = = + +
a cd a d b c b cd a cd b cd a b cd + + + = + +
0 a d b c a d b c + =
( )
a d b c =
a d b c =
a b
c d
=
D&E'1FG&'HIJI#K()
a d a d
c b c b
+ ì
4.
a d b d
c b d b
ì = ì =
a d
c b
+
Tuyển sinh Hải dơng ngày thứ nhất 6.7.2010
Câu IV. Cho tam giác ABC nhọn nội tiếp ( O ) BE, FC là các đờng cao, H là trực tâm. I là
trung điểm của BC. Kẻ MN vuông góc với HI nh hình vẽ
1.C.minh rằng : tứ giác BCEF nội tiếp
2. EF // EF
3. Tam giác MIN cân.
Bài giải phần 3.
Câu 5: Cho a, b, c, d là các số dơng thoả mãn
a b+ =
và
a b
c d c d
+ =
+
Chứng minh rằng
a d
c b
+
( II )
Bài giải:
Vì
a b+ =
và
a b
c d c d
+ =
+
nên :
a b a b
c d c d
+
+ =
+
a b a b a a b b
c d c d c d c c d d c d
+ = + + =
+ + + +
a b
a b
c c d d c d
+ =
ữ ữ
+ +
xét các T/h dẫn đến
a
c
a
c c d
a c d c
c d
d
b c d d
b
b
c d
d c d
=
ữ
=
+
+ =
+
+ =
=
=
ữ
+
+
( I )
Thay ( I ) vào ( II ) ta đợc :
0
a d c d c d c d
c b c d c d c d
+ +
+ = + = +
+ +
Ta dễ dàng chứng minh đợc
m n
n m
+
với m, n > 0
L
!"#"
$%&'()
Thi gian làm bài: 120 pht, không k! thi gian giao đê
*+, /&'()M&'1%-2%34"56&"7
8&'(-94)&:;%-
<=5>?(@47
Qr394#:(),-.
−
5
( )
( )
x y
y x
= −
= −
# !"#
m P
a a a
P
a a
− +
=
+
<="5"?(@47
&'.
−
./- .s
E-
#2#243 #>5b5.
A.
BC
x x+ + + =
<=>5?(@47
['#2#g7(^T$UHE0`?#^3q7T377U69I!,
=7T0#3$$OPE^E t0e$*)##:#^
'%#,@j67$*)##:%#ED0
<=A5>?(@47
&'$!^TU&u#>3?c#=86`?3 ,3v@#=U&`
E2#U$a3 ,3v@#=&uaE2#&('#'`Ta-P
0K#w'
Uu#;T`$TaJN=x$y0
&""2#TU`y"2#?70
R'3 #:`y$ax0&"TR$!^>#$%`a0
#12#34$4e3 `$3 a3 2#T`a#>c5e#%+0
<=B5?(@47
&"
/
≥/$%6≥0zc<E7I!@6#"
+3_"#
a b b c c a
+ + ≤
+ + + + + +
$%66##2#()c
BC00#-
dddddddddddddddddddddddddddddddR7ddddddddddddddddddddddddddddddd
R@e(0000000000000000000000000000000000000000000000000000000000f)2'c00000000000000000000000000000000000000000000000000000000000000
&gEe#:2400000000000000000000000000000000000000000000000&gEe#:24000000000000000000000000000000000000000000000000
P
<=5>?(@47
Qr394#:(),-.
−
K94(),-.
−
3_
#;W.=3 A$#;W,=3 Ad
5
( )
( )
x y
y x
= −
= −
,.-,
−
$'3N#,-0,
−
−
⇒,-
,,-$'3N#.-0
−
⇒.-
Q*,5#:5
x
y
=
=
,A
# !"#
m P
a a a
P
a a
− +
=
+
( )
m P
a a a a
a a
− +
=
+
( )
( )
a a
a
a a a
+
= =
+
<="5"?(@47
&'.
−
./- .s
E-
Q%-#>.
−
./-
∆-
−
#-
−
−
00-Pn⇒#>5b5
P
b
x
a
− − ∆ −
= =
$
P
b
x
a
− + ∆ +
= =
Q*,$%-*5#:
P P
A
S
− +
=
K #>5b5.
A.
∆n⇔m
−
n⇒
m
m <
[3>6F'QdF#>
b
x x
a
c
x x m
a
−
+ = =
× = =
`jE2#
( ) ( ) ( ) ( )
{x x x x x x+ + + = ⇔ + + + + + + =
( ) ( ) ( ) ( )
( )
P P P m Hx x x x x x x x m m⇒ + + = − + = − + + = − + = +
( ) ( )
H i ix x m x x x x m m⇒ + + = + ⇒ + + + = + +
( )
i ix x x x x x m m⇒ + + − + = + +
m i i H P m m m m m m⇒ + − + = + + ⇒ = − ⇒ = −
Q*,-d#>5b5.
A.
BC3DE
x x+ + + =
<=>5?(@47
.ED$*)##:#d^#%#,@j03DE.n0
[3>Q*)##d^#.!^cV./ED6$*)##d^#N#cV.
−
ED
#d^3.!^cV
H
x +
6#d^3N#cV
H
x −
#3$$OE^etP@#>
H H
P
x x
+ =
+ −
|
|⇔
P mi H x x− − =
Z { Z P∆ = ⇒ ∆ =
⇒.
-
P
−
<
'=A.
-
Q*,$*)##:#d^#%#,@jED0
i
<=A5>?(@47
<=B5?(@47
&"
/
≥/$%6≥
#J#"
/
−
/≥
#>
/
−
/-/
−
/
−
/-/
/
−
/
-/
−
u'6≥⇒/≥$
−
≥⇒/
−
≥
Q*,
/
≥/$%6≥
zc<E7I!@6#"+3_"#
a b b c c a
+ + ≤
+ + + + + +
$%
66##2#()cBC00#-
#>
/
≥/E7N$%00#-
⇒
/
/≥//#-//#⇒
( )
abc c
a b ab a b c a b c
≤ =
+ + + + + +
L
a
b c a b c
≤
+ + + +
$
b
c a a b c
≤
+ + + +
u'3>
c b a a b c
a b b c c a a b c a b c a b c a b c
+ +
+ + ≤ + + = =
+ + + + + + + + + + + + + +
{