TRƯỜNG THPT THỰC HÀNH KỲ THI TUYỂN SINH VÀO LỚP 10
CAO NGUYÊN NĂM HỌC 2010 - 2011
ĐẠI HỌC TÂY NGUYÊN MÔN : TOÁN
000 000
ĐỀ CHÍNH THỨC Thời Gian : 120 Phút (không kể thời gian giao đề)
Ngày thi : 17 / 06 / 2010
Bài 1: (2,0 điểm)
Cho biểu thức
x y x y
x y 2xy
M 1
1 xy
1 1
+ −
+ +
= + +
÷
÷
÷
−
− +
:
xy xy
.
a) Tìm điều kiện xác định của M và rút gọn biểu thức M.
b) Tìm giá trị của M với
x 3 2 2= +
.
Bài 2: (2,0 điểm)
Cho phương trình :
2
x 2m x 2m 1 0 (1)− + − =
a) Giải phương trình (1) khi m = 2.
b) Tìm m để phương trình (1) có 4 nghiệm phân biệt.
Bài 3: (1,0 điểm)
Cho hệ phương trình :
mx y 1
x 2y 3
− =
+ =
Tìm m nguyên để hệ có nghiệm (x ; y) với x,y là những số nguyên.
Bài 4: (1,0 điểm)
Giải phương trình:
2
x 2x 3 x 5+ − = +
Bài 5: (3,0 điểm)
Cho đường tròn tâm O đường kính AB = 2R và C là một điểm thuộc đường tròn (
C A;≠
C B≠
). Trên nửa mặt phẳng bờ AB có chứa điểm C, kẻ tia Ax tiếp xúc với đường tròn (O). Gọi M là
điểm chính giữa của cung nhỏ AC. Tia BC cắt Ax tại Q, tia AM cắt BC tại N. Gọi I là giao
điểm của AC và BM.
a) Chứng minh tứ giác MNCI nội tiếp.
b) Chứng minh
BAN, MCN∆ ∆
cân.
c) Khi MB = MQ, Tính BC theo R .
Bài 6: (1,0 điểm)
Cho x, y >0 và
2
x y 1+ =
. Tìm giá trị nhỏ nhất của biểu thức:
4 2
4 2
1 1
T x y
x y
= + + +