Tải bản đầy đủ (.doc) (6 trang)

Bo de on thi tot nghiep 2010

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (85.66 KB, 6 trang )

Lª DiÔm H¬ng THPT BC Nga S¬n
A/ Ph ¬ng tr×nh mò:
1) 5
2x-1
+5
x+1
- 250 = 0

x =2
2)
43
64
255


=
x
x


x =7/5
3)
22
43
93


=
x
x


4) 2
2x-3
- 3.2
x-2
+ 1 = 0

x =1 vµ x=2
5)
2442
)
2
5
()
5
2
(
−−
=
xx


x =1
6)
033.43
24
=+−
xx


x =0 vµ x=

4
1

7) 5
2x
- 7
x
- 5
2x
.35 + 7
x
.35 = 0

x =
2
1


8)
4
410
2
9
2
2
x
x
+
=




x =3
9)
33,0.2
100
3
2
+=
x
x
x


x =
13lg
3lg

10) 2
x
.5
x
=0,1(10
x-1
)
5

x =
2
3


11) 3
x
+3
x+1
+3
x+2
=5
x
+5
x+1
+5
x+2

x =
43
31
log
5
3

12) 2
x
+2
x-1
+2
x-2
=7
x
+7

x-1
+7
x-2

x =
343
228
log
7
2

13)
161
42.2
++
=
xx


x =
2
1
14)
10)625()625( =++−
xx


x =2 vµ x=-2
15)
xxx

)22()154()154( =++−


x =2
16)
2)625()625(
sinsin
=−++
xx


x=
Π
k
víi:
Zk


17)
093.613.73.5
1112
=+−+−
+−− xxxx


x=
5
3
log
3

;x=
5log
3


18)
022.92
2212
22
=+−
+++ xxxx


x=-1;x=2
19)
xxx
6242.33.8 +=+


x=1 vµ x=3
20) 3
x
+4
x
=5
x
21) 5
x-2
=3-x
22)

132
2
+=
x
x
23) 8
x
-3.4
x
-3.2
x+1
+8=0
24)
xxxxxx
2332
52623
22
−=−
−+−++
25)
033.369
31
22
=+−
−− xx


x=?
26) 25
x

-2(3-x)5
x
+2x-7 = 0
27) 9
x
+2(x-2)3
x
+2x-5 = 0
B/ BÊt Ph ¬ng tr×nh mò:
1)
xxx 3413154
)
2
1
()
2
1
(
2
−+−
<


x =?
2) 2
2x-1
+ 2
2x-3
- 2
2x-5

>2
7-x
+ 2
5-x
- 2
3-x


x>8/3
3)
8433
1
3
1
>+
+
xx


0<x<1
4)
62.3.23.34
212
++<++
+
xxxx
xxx


x =?

Båi dìng 12 – Gi¶i tÝch PT & BPT Mò – Logarit
1
Lª DiÔm H¬ng THPT BC Nga S¬n
5)
1
1
1
)25()25(
+


−≥+
x
x
x


x

1
6)
xxxxxx 21212
222
15.34925
+−++−++−
≥+

7)
xxxx ++
+≤

1
42.34
8)
xxxx
433.54
5,0125,0
−>−
−−+
C/ Ph ¬ng tr×nh loga rit:
1) log
2
(2x-5)
2
=2

x=1,5;x=3,5
2)
)4(log)3(log)542(log
3
3
1
2
3
−=++− xxx


x=6
3)
32log8log
2

2
=−
x
x


x=16, x=0,5
4)
01lg20lg
32
=+− xx


x=10, x=
9
10
.
5)
2
2
log4log
4
4
2
=+
x
x


x=2

6)
09log42log
2
4
=++ x
x


x=1/4, x=1/
4
2

7) log
2
(x
2
-3) - log
2
(6x-10) + 1 = 0

x=2
8) log
3
(x
2
-6) = log
3
(x-2) + 1

x=3

9) log
x
(2x
2
-3x-4) = 2

x=4
10) log
x+1
(x
2
-3x+1) = 1

x=4
11) log
2
(9
x
+5.3
x+1
) = 4

x=.?
12) log
2
(4
x
+1)=log
2
(2

x+3
-6) + x

x=0
13)
)2(l og2)2(log5log)1(log
25
15
5
1
2
5
−−+=++ xxx


x=
21
/2
14)
016)1(log)1(4)1(log)2(
3
2
3
=−+++++ xxxx


x=2, x=
81
80


.
15)
2
1
)213(log
2
3
=+−−
+
xx
x


x
2
53 +−
=
vµ x =
2
299 −
16)
x
x
−=− 3)29(log
2


x=0 vµ x =3
17)
13)23.49(log

1
3
+=−−
+
x
xx


x=0 vµ x=
1)153(log
3
−+


18

)
2
22
4log6log
2
3.22l og4
x
xx =−


x= 1/4
19)
2
9

3
32
27
)3(log
2
1
log
2
1
)65(log −+

=+− x
x
xx


x=5/3
20)
3
8
2
2
4
)4(log4log2)1(log xxx ++−=++


x=2 vµ x=
242 −

21)

1
12
2
log
4
12
=
+
+

x
x
x


x=?
22)
2
1
)213(log
2
3
=+−−
+
xx
x

23) log
7
(7

-x
+6)=1+x

x=?
24)
0222
1loglog1log
55
2
5
=+−
−+ xxx


x=5
D/ BÊt Ph ¬ng tr×nh loga rit:
1) lg(x+4)+lg(3x+46)>3

x

6 2)log
4x-3
x
2
>1

x
( )
∞∈ ;3
3)log

x
(x
3
-x
2
-2x)<3

x
( )
+∞∈ ;2
4)
0
64
log
5
1

+
x
x

x






−−∈
2

3
;2

5)lg
2
x-lgx
3
+2

0

x
(
] [
)
+∞∪∈ ;10010;0
6)1+log
2
(x-1)

log
x-1
4

x
[
) ( )
+∞∪∈ ;32;4/5
7)
0

1)4(log
5
2

−−

x
x

x=5 vµ x
( )
+∞+∈ ;24

Båi dìng 12 – Gi¶i tÝch PT & BPT Mò – Logarit
2
Lª DiÔm H¬ng THPT BC Nga S¬n
8)
0
54
)3(log
2
2
2

−−

xx
x

x=4 vµ x

( )
+∞∈ ;5
9)
5
1
log2log2
5 x
x ≥−

x
( )
+∞∈ ;1

10)log
x
2.log
2x
2.log
2
4x>1

x
( ) ( )
22
2;15,0;2 ∪∈


11)
1
14

224
log
2
16
25
2
>
−−

xx
x

x
( ) ( )
4;31;3 ∪−∈

12)
0
3
12
loglog
2
2
1
<
+

+
x
x

x

x
( )
+∞∈ ;4
13)log
x
(4+2x)<1

x
( ) ( ) ( ) ( )
∞∪∪−∪−−∈ ;21;00;11;2
14)
316log64log
2
2
≥+
x
x

x
(
]
4;12;
2
1
3
1













15)
2)22(log)12(log
1
2
12
−>−−
+xx

x
( )
3log;5log2
22
+−∈
16)
)3(log53loglog
2
4
2
2
1

2
2
−>−+ xxx

x
( )
16;8
2
1
;0 ∪








17)
2)83(log
3
1
−>− x
x
18 )
1
1
32
log
3

<


x
x

19)
)243(log1)243(log
2
3
2
9
++>+++ xxxx


x






−∪






−−∈ 1;

3
1
1;
3
7

¤N TèT NGHIÖP N¡M 2008-2009
A/ Ph ¬ng tr×nh mò:
1) 5
2x-1
+5
x+1
- 250 = 0

x =2
11)3
x
+3
x+1
+3
x+2
=5
x
+5
x+1
+5
x+2

x =
43

31
log
5
3

Båi dìng 12 – Gi¶i tÝch PT & BPT Mò – Logarit
3
Lª DiÔm H¬ng THPT BC Nga S¬n
2)
43
64
255


=
x
x


x =7/5
3)
22
43
93


=
x
x


4) 2
2x-3
- 3.2
x-2
+ 1 = 0

x =1 vµ x=2
5)
2442
)
2
5
()
5
2
(
−−
=
xx


x =1
6)
033.43
24
=+−
xx


x =0 vµ x=

4
1
7) 5
2x
- 7
x
- 5
2x
.35 + 7
x
.35 = 0

x =
2
1


8)
4
410
2
9
2
2
x
x
+
=




x =3
9)
33,0.2
100
3
2
+=
x
x
x


x =
13lg
3lg

10) 2
x
.5
x
=0,1(10
x-1
)
5

x =
2
3


23) 8
x
-3.4
x
-3.2
x+1
+8=0
24)
xxxxxx
2332
52623
22
−=−
−+−++
25)
033.369
31
22
=+−
−− xx


x=?
26) 25
x
-2(3-x)5
x
+2x-7 = 0
27) 9
x

+2(x-2)3
x
+2x-5 = 0

12)2
x
+2
x-1
+2
x-2
=7
x
+7
x-1
+7
x-2

x =
343
228
log
7
2

13)
161
42.2
++
=
xx



x =
2
1
14)
10)625()625( =++−
xx



x =2 vµ x=-2
15)
xxx
)22()154()154( =++−


x =2
16)
2)625()625(
sinsin
=−++
xx


x=
Πk
víi:
Zk ∈


17)
093.613.73.5
1112
=+−+−
+−− xxxx

x=
5
3
log
3
;x=
5log
3


18)
022.92
2212
22
=+−
+++ xxxx


x=-1;x=2
19)
xxx
6242.33.8 +=+



x=1 vµ x=3
20) 3
x
+4
x
=5
x
21) 5
x-2
=3-x
22)
132
2
+=
x
x
B/ BÊt Ph ¬ng tr×nh mò:

1)
xxx 3413154
)
2
1
()
2
1
(
2
−+−
<



x =?
2)2
2x-1
+ 2
2x-3
- 2
2x-5
>2
7-x
+ 2
5-x
- 2
3-x

x>8/3
3)
8433
1
3
1
>+
+
xx


0<x<1
4)
62.3.23.34

212
++<++
+
xxxx
xxx
5)
1
1
1
)25()25(
+


−≥+
x
x
x


x

1
6)
xxxxxx 21212
222
15.34925
+−++−++−
≥+

7)

xxxx ++
+≤
1
42.34
8)
xxxx
433.54
5,0125,0
−>−
−−+
C/ Ph ¬ng tr×nh loga rit:
Båi dìng 12 – Gi¶i tÝch PT & BPT Mò – Logarit
4
Lª DiÔm H¬ng THPT BC Nga S¬n
1) log
2
(2x-5)
2
=2

x=1,5;x=3,5
2)
)4(log)3(log)542(log
3
3
1
2
3
−=++− xxx


x=6
3)
32log8log
2
2
=−
x
x


x=16, x=0,5
4)
01lg20lg
32
=+− xx

x=10, x=
9
10
.
5)
2
2
log4log
4
4
2
=+
x
x



x=2
09log42log
2
4
=++ x
x

x=1/4,x=1/
4
2

7)log
2
(x
2
-3) - log
2
(6x-10) + 1 = 0

x=2
8) log
3
(x
2
-6) = log
3
(x-2) + 1


x=3
9) log
x
(2x
2
-3x-4) = 2

x=4
10)
2
1
)213(log
2
3
=+−−
+
xx
x

11) log
2
(9
x
+5.3
x+1
) = 4
12) log
2
(4
x

+1)=log
2
(2
x+3
-6) + x

x=0
20)
0222
1loglog1log
55
2
5
=+−
−+ xxx


x=5
13)
)2(l og2)2(log5log)1(log
25
15
5
1
2
5
−−+=++ xxx

x=
21

/2
14)
016)1(log)1(4)1(log)2(
3
2
3
=−+++++ xxxx


x=2, x=
81
80

.
15)
2
1
)213(log
2
3
=+−−
+
xx
x


x
2
53 +−
=

vµ x =
2
299 −
16)
x
x
−=− 3)29(log
2


x=0 vµ x =3
17)
13)23.49(log
1
3
+=−−
+
x
xx


x=0 vµ x=
1)153(log
3
−+


18

)

2
22
4log6log
2
3.22l og4
x
xx =−


x= 1/4
19)

3
8
2
2
4
)4(log4log2)1(log xxx ++−=++


x=2 vµ x=
242 −

D/ BÊt Ph ¬ng tr×nh loga rit:
1) lg(x+4)+lg(3x+46)>3

x

6 2)log
4x-3

x
2
>1

x
( )
∞∈ ;3
3)log
x
(x
3
-x
2
-2x)<3

x
( )
+∞∈ ;2
4)
0
64
log
5
1

+
x
x

x







−−∈
2
3
;2

5)lg
2
x-lgx
3
+2

0

x
(
] [
)
+∞∪∈ ;10010;0
6)1+log
2
(x-1)

log
x-1

4

x
[
) ( )
+∞∪∈ ;32;4/5
7)
0
1)4(log
5
2

−−

x
x

x=5 vµ x
( )
+∞+∈ ;24

8)
0
54
)3(log
2
2
2

−−


xx
x

x=4 vµ x
( )
+∞∈ ;5
9)
5
1
log2log2
5 x
x ≥−

x
( )
+∞∈ ;1

10)log
x
2.log
2x
2.log
2
4x>1

x
( ) ( )
22
2;15,0;2 ∪∈


11)
1
14
224
log
2
16
25
2
>
−−

xx
x

x
( ) ( )
4;31;3 ∪−∈

12)
0
3
12
loglog
2
2
1
<
+


+
x
x
x

x
( )
+∞∈ ;4
13)
316log64log
2
2
≥+
x
x

x
(
]
4;12;
2
1
3
1












14)log
x
(4+2x)<1

x
( ) ( ) ( ) ( )
∞∪∪−∪−−∈ ;21;00;11;2
15)
2)22(log)12(log
1
2
12
−>−−
+xx

x
( )
3log;5log2
22
+−∈
16)
)3(log53loglog
2
4

2
2
1
2
2
−>−+ xxx

x
( )
16;8
2
1
;0 ∪








17)
2)83(log
3
1
−>− x
x
18 )
1
1

32
log
3
<


x
x

19)
)243(log1)243(log
2
3
2
9
++>+++ xxxx


x






−∪







−−∈ 1;
3
1
1;
3
7

Båi dìng 12 – Gi¶i tÝch PT & BPT Mò – Logarit
5
Lª DiÔm H¬ng THPT BC Nga S¬n
Båi dìng 12 – Gi¶i tÝch PT & BPT Mò – Logarit
6

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×