6
P
aleopter
a
1
. Intr
oduc
t
ion
I
n the infraclass Paleoptera are the orders Ephemeroptera (ma
y
flies) and Odonata (dra
g-
onflies and damselflies), the livin
g
species of which represent the few remains of tw
o
formerl
y
ver
y
extensive
g
roups. Althou
g
h both are placed in the Paleoptera, authorities
di
sagree on w
h
et
h
er t
h
etwoor
d
ers are monop
h
y
l
et
i
cor
h
ave separate or
i
g
i
ns (see C
h
ap
-
t
er 2, Sect
i
on 3.2). Even
if
monop
h
y
l
et
i
c, t
h
eEp
h
emeroptera an
d
O
d
onata are two ver
y
diff
erent
g
roups t
h
at must
h
ave
di
ver
g
e
d
ataver
y
ear
ly
sta
g
e
i
nt
h
eevo
l
ut
i
on o
f
w
i
n
g
e
d
insects. The
y
possess the followin
g
common features that unite them as Paleoptera: win
gs
t
hat cannot be folded back a
g
ainst the bod
y
when not in use, retention of the anterio
r
me
di
an w
i
ng ve
i
n, net
lik
e arrangement o
f
w
i
ng ve
i
ns (many crossve
i
ns), aquat
i
c
j
uve-
n
il
e stage, an
d
cons
id
era
bl
ec
h
ange
f
rom
j
uven
il
etoa
d
u
l
t
f
orm. In mem
b
ers o
fb
ot
h
or
d
ers, w
i
n
gd
eve
l
opment
i
s externa
l
,t
h
ou
gh
t
hi
s
f
eature
i
s not, o
f
course, restr
i
cte
d
to
Paleo
p
tera.
2
. Ephemeropter
a
S
ynonyms:
P
lecto
p
tera, E
p
hemerida
C
ommon names
:
m
a
y
flies, shadflies
Adults small- to medium-sized elongate fragile insects; antennae short and setaceous, mouthpart
s
v
est
i
g
i
a
l
, compoun
d
eyes
l
arge, t
h
ree oce
lli
present; genera
ll
ytwopa
i
rs o
f
mem
b
ranous w
i
ngs
(t
h
ou
gh hi
n
d
pa
i
r
g
reat
ly
re
d
uce
d
)
h
e
ld
vert
i
ca
lly
over
b
o
dy
w
h
en at rest, w
i
t
h
man
y
crossve
i
ns;
abdomen terminated with two very long cerci and frequently a median caudal filament; with
s
u
bi
ma
gi
na
l
an
di
ma
gi
na
l
w
i
n
g
e
d
sta
g
es.
L
arvae aquat
i
c;
b
o
d
y campo
d
e
if
orm; antennae s
h
ort, compoun
d
eyes we
ll
-
d
eve
l
ope
d
,
bi
t
i
ng
mout
h
parts; a
bd
omen usua
lly
w
i
t
hl
on
g
cerc
i
an
d
ame
di
an cau
d
a
lfil
ament, an
df
our to seven
pairs of segmental tracheal gills.
Approx
i
mate
l
y 2100 spec
i
es o
f
t
hi
sw
id
e
l
y
di
str
ib
ute
d
or
d
er
h
ave
b
een
d
escr
ib
e
d
,
th
oug
h
t
hi
s may represent on
l
ya
b
out one-t
hi
r
d
o
f
t
h
e extant spec
i
es. O
f
t
h
e
d
e
-
scribed species, about 67
5
occur in North America, 84 in Australia, and about
5
0in
B
ritain
.
12
7
128
CHAPTER
6
Structur
e
A
du
lt
.
Th
e
h
ea
di
str
i
angu
l
ar
i
ns
h
ape w
h
en v
i
ewe
df
rom a
b
ove. T
h
e compoun
d
eye
s
are
l
ar
g
e, espec
i
a
lly i
nma
l
es w
h
ere t
h
e
y
o
f
ten meet m
idd
orsa
lly
an
d
t
y
p
i
ca
lly
are
di
v
id
e
d
horizontall
y
into an upper re
g
ion with lar
g
e facets and a lower re
g
ion with smaller facet
s
(
Fi
g
ure 6.1). This arran
g
ement provides a male with both hi
g
h acuit
y
and
g
ood sensitivit
y,
a
ll
ow
i
ng
hi
mto
d
etect an
d
capture an
i
n
di
v
id
ua
lf
ema
l
e
i
n a swarm at
l
ow
li
g
h
t
i
ntens
i
ty.
T
h
ree oce
lli
are present, t
h
etwo
l
atera
l
so
f
ten
l
arge. T
h
e antennae are sma
ll
,mu
l
t
i
annu
l
ate,
setaceous structures. T
h
e mout
h
parts are vest
igi
a
l
.T
h
et
h
orac
i
cre
gi
on
i
s
d
om
i
nate
dby
the lar
g
e mesothoracic se
g
ment. Pleural sulci are poorl
y
developed or absent even on th
e
pterothorax. Two pairs of fra
g
ile win
g
s are
g
enerall
y
present, thou
g
h the hind pair is alwa
y
s
re
d
uce
d
or a
b
sent. T
h
ew
i
ng venat
i
on
i
spr
i
m
i
t
i
ve, t
h
eme
di
an ve
i
n
b
e
i
ng
di
v
id
e
di
nto
anter
i
or an
d
poster
i
or
b
ranc
h
es. T
h
e
l
egs are somet
i
mes re
d
uce
d
, assoc
i
ate
d
w
i
t
h
t
h
e
h
a
bi
t
of
pass
i
ng t
h
e ent
i
re a
d
u
l
t
lif
eont
h
ew
i
ng. However, t
h
e
f
ore
l
egs o
f
ma
l
es are usua
ll
y
e
nlar
g
ed and used to
g
rip a female durin
g
matin
g
. Primitivel
y
there are five tarsal se
g
ments,
but
t
he basal one or two se
g
ments ma
y
fuse with the tibia in hi
g
her families. The apex of th
e
abdomen has three, usually very long, multiannulate caudal filaments, consisting of the tw
o
l
atera
l
cerc
i
an
d
ame
di
an
fil
ament (t
hi
s
i
s somet
i
mes re
d
uce
d
or a
b
sent). In
f
ema
l
es pa
i
re
d
gonopores open
b
e
hi
n
d
t
h
e sevent
h
a
bd
om
i
na
l
sternum. A typ
i
ca
l
ov
i
pos
i
tor
i
sa
b
sent. In
m
ales a pair of claspers occurs on the ninth sternum. Between these claspers lies a pair of
penes.
T
he most noteworthy internal feature is the modification of the gut as an aerostati
c
o
rgan to re
d
uce t
h
e spec
ifi
c grav
i
ty o
f
t
h
e
i
nsect. T
h
e esop
h
agus
i
s a narrow tu
b
e equ
i
ppe
d
wi
t
h
musc
l
es t
h
at regu
l
ate t
h
e amount o
f
a
i
r
i
nt
h
e gut. Swa
ll
owe
d
a
i
r
i
s
h
e
ld i
nt
h
em
id
gut,
w
hich no lon
g
er has a di
g
estive function and is lined with pavement rather than columnar
e
pithelium. The hind
g
ut also has a valve to prevent loss of air. The reproductive or
g
ans ar
e
v
er
y
primitive; accessor
yg
lands are absent, and the
g
onoducts are paired in both sexes
.
La
r
v
a
.
M
ay
fl
y
l
arvae ex
hibi
taw
id
e range o
fb
o
d
y
f
orm assoc
i
ate
d
w
i
t
h
t
h
e
di
vers
e
habitats in which the
y
are found. The bod
y
is of varied shape but is often flattened dorsoven
-
trall
y
. The antennae, compound e
y
es, and ocelli differ little from those of adults. Larvae
possess well-developed bitin
g
mouthparts. The structure of the le
g
s varies accordin
g
to
wh
et
h
er a
l
arva
i
sasw
i
mm
i
ng,
b
urrow
i
ng, or c
li
ng
i
ng
f
orm. T
h
ea
bd
omen
i
s term
i
nate
d
wi
t
h
apa
i
ro
fl
ong cerc
i
an
d
usua
ll
yame
di
an cau
d
a
lfil
ament. Between
f
our an
d
seven pa
i
rs
of
trac
h
ea
l gill
s occur on t
h
ea
bd
omen. In open-water
f
orms t
h
e
gill
s are usua
lly l
ame
ll
ate;
i
n burrowin
g
species the
y
tend to be plumose. In some species
g
ills ma
y
not be directl
y
im-
portant in
g
aseous exchan
g
e. The
y
are capable of coordinated flappin
g
movements and ma
y
serve s
i
mp
l
y to create a current o
f
water
fl
ow
i
ng ove r t
h
e
b
o
d
y. In some spec
i
es accessory
g
ill
-
lik
e resp
i
ratory structures
d
eve
l
op on t
h
et
h
orax an
dh
ea
d
.
F
IGURE 6.1.
D
orsa
l
v
i
ew o
fh
ea
d
o
f
ma
le
Ata
l
op
hl
e
b
ia
(
Lep
-
t
op
hl
e
biid
ae) s
h
ow
i
n
gl
ar
g
e compoun
d
e
y
e
di
v
id
e
di
nto upper part
w
ith large facets and lower part with small facets. [From W. L. Peters
an
d
I. C. Camp
b
e
ll
, 1991, Ep
h
emeroptera,
i
n:
Th
e Insects of Aus
-
tra
l
ia
,
2n
d
e
d
., Vo
l
. I (CSIRO, e
d
.), Me
lb
ourne Un
i
vers
i
t
y
Press. B
y
permission of the Division of Entomology, CSIRO.]
129
PA
LE
O
PTER
A
Life Histor
y
and Habits
Adult ma
y
flies are commonl
y
found in the vicinit
y
of water, often in hu
g
e matin
g
swarms. T
h
ey are s
h
ort-
li
ve
d
creatures, ex
i
st
i
ng
f
or on
l
ya
f
ew
h
ours (most
l
y nocturna
l
spec
i
es) or a
f
ew
d
ays. A swarm cons
i
sts genera
ll
yon
l
yo
f
ma
l
es, o
f
ten
i
nt
h
et
h
ousan
d
s,
flyi
n
gi
n an up-an
d
-
d
own pattern over water or a spec
ifi
c mar
k
er suc
h
as a roc
k
,
b
us
h
,o
r
shoreline. Swarmin
g
commonl
y
occurs at dusk in temperate species, li
g
ht intensit
y
an
d
t
emperature bein
g
the ma
j
or determinants of when it occurs. Females enter a swarm, and
mat
i
ng usua
ll
y occurs
i
mme
di
ate
l
yan
dl
asts
f
or
l
ess t
h
anam
i
nute. Part
h
enogenes
i
s
h
as
b
een reported for about
5
0 species, though it is rarely obligate. The egg-laying habits ar
e
quite varied, as is the number of eggs laid (generally from
5
00 to 3000). In some short-lived
species e
gg
s are lai
d
en ma
sse
on the water surface. The clutch breaks up and the e
gg
s
sink, becomin
g
scattered over the substrate. In species that survive for several da
y
s the
eggs may be laid in small batches
;
B
aet
is
s
pp
. females descend below the water surface
t
o secure t
h
e eggs on t
h
esu
b
strate. Eggs o
f
ten
h
ave spec
i
a
l
structures t
h
at serve to anc
h
o
r
th
em
i
n pos
i
t
i
on. T
h
ey usua
ll
y
h
atc
h
w
i
t
hi
n 10–20
d
ays,
b
ut
i
na
f
ew spec
i
es t
h
eegg
s
enter a diapause to overcome low winter temperatures. Consequentl
y
, the
y
do not hatch
u
ntil the followin
g
sprin
g
. In some species that have a relativel
y
lon
g
adult life (up to
3 weeks) ovoviviparity occurs, females retaining fertilized eggs in the genital tract for
severa
ld
ays pr
i
or to ov
i
pos
i
t
i
on. Em
b
ryos t
h
en
h
atc
hf
rom t
h
e eggs w
i
t
hi
na
f
ew m
i
nutes o
f
d
epos
i
t
i
on
.
I
n most ma
y
fl
y
species the larval life span is 2–4 months; however, some ma
y
fl
y
larvae
a
re lon
g
-lived, with a development time of at least a
y
ear and, in some instances, of 2 or
3
y
ears. Durin
g
this period the
y
molt man
y
times (15–30 is most common, but as man
y
a
s
5
0 have been recorded). Larvae occupy a wide range of habitats, though each one is charac-
t
er
i
st
i
c
f
or a part
i
cu
l
ar spec
i
es. T
h
ey may
b
urrow
i
nto t
h
esu
b
strate,
hid
e
b
eneat
h
stones an
d
l
o
g
s, c
l
am
b
er a
b
out amon
g
water p
l
ants, or c
li
n
g
to t
h
e upper sur
f
ace o
f
roc
k
san
d
stones
in
f
ast-flowing streams. With the exception of a few carnivorous forms, larvae feed on algae,
f
f
or plant detritus, and thus pla
y
ake
y
role in ener
gy
flow and nutrient rec
y
clin
g
in freshwate
r
ecosystems. Popu
l
at
i
ons o
fl
arva
l
may
fli
es s
h
ow c
h
aracter
i
st
i
c movements at spec
ifi
ct
i
mes
d
ur
i
ng t
h
e
i
r
lif
e. T
h
ese may
b
e
di
urna
l
, seasona
l
,an
d
/or
di
rect
i
ona
l
. For examp
l
e, spec
i
es
i
n runn
i
ng water may
h
ave
d
a
il
ym
i
grat
i
ons
i
nto an
d
out o
f
t
h
esu
b
strate, or t
h
ey may mov
e
into the substrate durin
g
periods of heav
y
water flow. T
y
picall
y
, in both still and movin
g
waters larvae move toward the shore durin
g
the later sta
g
es of their existence. And some
species, especially of
B
aet
is
,
h
ave
characteristic nocturnal rhythms of downstream drift. Fo
r
ot
h
er spec
i
es,
d
r
if
t
i
s
i
n
fl
uence
db
y
b
ot
hl
arva
l
c
h
aracters (e.g., age an
d
popu
l
at
i
on
d
ens
i
ty)
an
d
env
i
ronmenta
lf
actors suc
h
as temperature, oxygen, current ve
l
oc
i
ty, se
di
ment, an
d
food. How species compensate for the potential decrease in population upstream is not well
u
nderstood, thou
g
h for some upstream movement of larvae has been demonstrated, while
for others the ima
g
os undertake upstream fli
g
hts before oviposition.
May
fli
es are un
i
que among
li
v
i
ng Pterygota
i
nt
h
at t
h
ey mo
l
t
i
nt
h
ea
d
u
l
t stage. A matur
e
l
arva, on
l
eav
i
ng
i
ts aquat
i
cenv
i
ronment, mo
l
ts
i
ntoasu
bi
mago, a w
i
nge
d
a
d
u
l
t
f
orm (
b
u
t
see C
h
apter 2, Sect
i
on 3.2), o
f
ten capa
bl
eo
f fligh
t.Asu
bi
ma
g
o can
b
e
di
st
i
n
g
u
i
s
h
e
df
rom
t
he ima
g
o into which it molts b
y
its duller coloration and b
y
the translucent win
g
s, which
are often frin
g
ed with hairs. A subima
g
o exists usuall
y
for about 24 hours before moltin
g
t
ot
h
e
i
mago. Un
d
er a
d
verse con
di
t
i
ons,
h
owever, a su
bi
mago may surv
i
ve
f
or many
d
ays.
I
na
f
ew except
i
ona
l
spec
i
es t
h
esu
bi
mago never mo
l
ts
b
ut
i
st
h
e repro
d
uct
i
ve stage. I
t
h
as
b
een specu
l
ate
d
t
h
at t
h
ea
d
u
l
tmo
l
tma
yb
eapr
i
m
i
t
i
ve tra
i
t reta
i
ne
db
ecause o
f
a
l
ac
k
130
CHAPTER
6
o
f selection pressure on the short-lived sta
g
es to have a sin
g
le adult instar. An alternative
su
gg
estion is that an adult molt became necessar
y
to complete elon
g
ation of the cauda
l
filaments and adult forele
g
s (Maiorana, 1979). In populations of subtropical and tropical
m
ay
fli
es emergence ten
d
s to occur over a cons
id
era
bl
e
l
engt
h
o
f
t
i
me, w
h
ereas
i
n spec
i
es
f
rom coo
l
er c
li
mates
i
t
i
so
f
ten
hi
g
hl
y sync
h
ron
i
ze
d
,
l
ea
di
ng to t
h
e pro
d
uct
i
on o
f
enormous
swarms
f
or s
h
ort per
i
o
d
so
f
t
h
e
y
ear.Ona
d
a
y
-to-
d
a
yb
as
i
s,
h
owever, emer
g
ence ma
y
s
h
ow
distinct rh
y
thmicit
y
or require environmental cues such as a minimum water temperatur
e
o
r full moon for its initiation
.
P
hylo
g
eny and
C
lass
ifi
cat
i
o
n
Although the basic groups within the Ephemeroptera have been recognized since the
w
ork of Eaton (1883–1888, cited in Edmunds, 1962), differences of opinion continue t
o
e
x
i
st w
i
t
h
re
g
ar
d
to t
h
e taxonom
i
c ran
k
t
h
at s
h
ou
ld b
e ass
ig
ne
d
t
h
ese
g
roups, an
d
t
he
relationships amon
g
the
g
roups. The primar
y
obstacle to determinin
g
these relationships is
the hi
g
hde
g
ree of parallel evolution that has occurred amon
g
members of different
g
roups.
In many
i
nsect groups t
hi
s pro
bl
em can
b
e overcome usua
ll
y
b
y compar
i
ng a num
b
er o
f
diff
erent c
h
aracters
f
rom a
ll
stages o
f
t
h
e
lif
e
hi
story (E
d
mun
d
s, 1972). Un
f
ortunate
l
y, man
y
m
ay
fli
es are
k
nown on
l
y
f
rom t
h
e
j
uven
il
eort
h
ea
d
u
l
t
f
orm
.
T
he scheme used here is based on McCaffert
y
(1991), Wan
g
and McCaffert
y
(1995),
Bae and McCaffert
y
(1995), and McCaffert
y
(personal communication). It proposes tha
t
the order be arranged in 23 families shared among four suborders. A proposed phylogeny o
f
these groups is depicted in Figure6.2. According to McCafferty and Edmunds (1979), the an
-
c
estor o
f
mo
d
ern may
fli
es may
h
ave resem
bl
e
d
mem
b
ers o
f
t
h
e extant
f
am
il
yS
i
p
hl
onur
id
ae
FIGURE 6.2. Propose
d
p
h
y
l
ogenet
i
cre
l
at
i
ons
hi
ps w
i
t
hi
nt
h
eEp
h
emeroptera
.
131
PA
LE
O
PTER
A
t
hat show a lar
g
e number of primitive features; that is, the
y
have evolved relativel
y
littl
e
compared to other ma
y
fl
yg
roups. From this siphlonuridlike ancestor, two ma
j
or line
s
ev
o
lved. One led to the suborder Carapacea, the other to the suborders Furcater
g
alia
,
Set
i
sura (w
hi
c
h
are s
i
ster groups) an
d
P
i
sc
if
orma. T
h
oug
h
re
l
at
i
ons
hi
ps o
f
t
h
e
f
am
ili
es
i
nt
h
e
fi
rst t
h
ree su
b
or
d
ers are reasona
bl
yc
l
ear, t
h
ose
f
or t
h
eP
i
sc
if
orma rema
i
nto
be
esta
bli
s
h
e
d.
S
u
b
or
d
er Cara
p
ace
a
Mem
b
ers o
f
t
h
e Carapacea (an a
ll
us
i
on to t
h
e carapace
lik
een
l
argement o
f
t
h
e
l
arva
l
mesonotum) are
i
nc
l
u
d
e
di
nas
i
ng
l
e super
f
am
il
y Prosop
i
stomato
id
ea.
Super
f
amily Prosopistomatoidea
The two small families in this
g
roup, the BAETISCIDAE [12 North American species
of
Baet
i
sc
a
(
Fi
g
ure 6.3)] and PROSOPISTOMATIDAE (11 species of
P
rosop
i
stoma
w
ith
aw
id
e
di
str
ib
ut
i
on
i
nc
l
u
di
ng A
f
r
i
ca, Austra
li
a, Europe, an
d
sout
h
ern As
i
a), s
h
ow cons
id
-
era
bl
e para
ll
e
l
evo
l
ut
i
on
i
nt
h
e
l
arva
l
stage. In
d
ee
d
,t
h
e
i
r
l
arvae are remar
k
a
bl
e
i
n
h
av
i
n
g
an enormous, poster
i
or
ly
pro
j
ect
i
n
g
mesonota
l
s
hi
e
ld
t
h
at protects t
h
e
gill
ssot
h
at t
h
e
y
su-
perficiall
y
resemble notostracan crustacea, into which
g
roup Proso
p
istom
a
w
as
ori
g
inall
y
placed b
y
the French zoolo
g
ist Latreille in 1833 (Berner and Pescador, 1980). Larvae of
most spec
i
es
li
ve
i
nmov
i
ng water,
f
rom streams to
l
arge r
i
vers, w
h
ere t
h
e
b
ottom
h
as san
d,
fi
ne grave
l
,orsma
ll
stones. A
d
u
l
t
b
aet
i
sc
id
s, w
hi
c
h
are me
di
um-s
i
ze
di
nsects,
h
aveanun-
u
sua
lly l
ar
g
e mesot
h
orax; t
h
ee
y
es o
f
ma
l
es are
l
ar
g
ean
d
a
l
most cont
ig
uous
b
ut not
di
v
id
e
d
h
orizontall
y
. Prosopistomatid adults of both sexes have small, widel
y
separated e
y
es; males
h
ave relativel
y
short forele
g
s; the le
g
s of females are vesti
g
ial; and females do not have an
a
d
u
l
tmo
l
t
.
S
uborder Pisciforma
McCa
ff
ert
y
(1991)
i
ntro
d
uce
d
t
h
esu
b
or
d
er P
i
sc
if
orma (t
h
e name re
f
ers to t
h
em
i
n
-
nowlike bod
y
and actions of the larvae) for a
g
roup of families whose relationships remai
n
u
nclear. For this reason, no arran
g
ement into superfamilies is undertaken, thou
g
h in earlier
F
I
GU
RE 6.3
.
Larva o
f
B
aetisca
b
aj
k
ovi
(
Baetiscidae
)
. [From B. D. Burks, 19
5
3
,
The mayflies, or Ephemeroptera, of Illinois,
B
ull. Ill. Nat. Hist.
S
ur
v.
26
(1). B
y
p
erm
i
ss
i
on o
f
t
h
eI
lli
no
i
s Natura
l
H
i
story Survey.]
132
CHAPTER
6
FI
GU
RE 6.4.
L
ar
v
aof
B
aet
i
sva
g
an
s
(
Baetidae
)
. [From B. D. Burks, 1953,
The mayflies, or Ephemeroptera, of Illinois
,
B
ull. Ill. Nat. Hist. Surv
.
2
6
(1)
.By
p
erm
i
ss
i
on o
f
t
h
eI
lli
no
i
s Natura
l
H
i
stor
y
Surve
y
.]
sc
h
emes t
h
e
f
am
ili
es were
l
umpe
di
nas
i
ng
l
e super
f
am
il
y Baeto
id
ea. On
l
yt
h
ema
j
or
f
am-
i
lies are outlined here
.
T
he SIPHLONURIDAEis a fairl
y
lar
g
e, probabl
y
paraph
y
letic, famil
y
containin
g
abou
t
1
60 described species with a worldwide distribution but especiall
y
diverse in the holarcti
c
reg
i
on. T
h
e stream
li
ne
d
, act
i
ve
l
arvae are
f
oun
d
on t
h
e
b
ottom o
ff
ast-
fl
ow
i
ng streams o
r
among vegetat
i
on
i
nst
ill
-water
h
a
bi
tats. Some are pre
d
aceous. A
d
u
l
ts are me
di
um- to
l
arge
-
s
i
ze
d
ma
yfli
es, an
d
t
h
e sexes are s
i
m
il
ar
i
nco
l
orat
i
on. In
b
ot
h
sexes t
h
e compoun
d
e
y
es are
l
ar
g
e and have a transverse band dividin
g
the upper and lower re
g
ions. In males the e
y
es
are usuall
y
conti
g
uous
.
T
he BAETIDAE (Figure 6.4) is easily the largest family of Ephemeroptera (
>
500
spec
i
es) an
dh
asawor
ld
w
id
e
di
str
ib
ut
i
on. T
h
e torpe
d
o-s
h
ape
dl
arvae are
f
oun
di
navar
i
et
y
of h
a
bi
tats
b
ut common
ly
on t
h
e
b
ottom o
ff
ast-
fl
ow
i
n
g
streams w
h
ere t
h
e
y
ma
yb
ewe
ll
c
amoufla
g
ed. Adults are
g
enerall
y
small and sexuall
y
dimorphic. The hind win
g
s are
g
reatl
y
reduced or absent. The compound e
y
es of males are lar
g
e and divided horizontall
y
int
o
di
st
i
nct parts;
i
n
f
ema
l
es t
h
e eyes are sma
ll
an
d
s
i
mp
l
e
.
Suborder Setisura
Included in this suborder are the families listed under the superfamil
y
Hepta
g
enioide
a
i
n older classifications. The ma
j
or famil
y
is the HEPTAGENIIDAE (Fi
g
ure 6.5) which
ranks next to the Baetidae in terms of number of described species (380). Heptageni-
id
s are an a
l
most ent
i
re
l
y
h
o
l
arct
i
can
d
or
i
enta
l
group an
d
are not represente
di
nt
he
A
ustra
l
as
i
an reg
i
on. T
h
e genera
ll
y
d
ar
kl
yco
l
ore
dl
arvae are typ
i
ca
ll
y
f
oun
d
c
li
ng
i
ng to
the underside (occasionall
y
the exposed face) of stones in fast-flowin
g
streams and o
n
wav
e
-washed shores of lar
g
e lakes. The
y
are remarkabl
y
well adapted for this life. Their
body is extremely flattened dorsoventrally; the femora are broad and flat; the tarsal claw
s
h
ave
d
ent
i
c
l
es on t
h
e
l
ower s
id
e; t
h
eg
ill
s are strengt
h
ene
d
on t
h
e
i
r anter
i
or marg
i
n;
i
n
some spec
i
es t
h
e ent
i
re
b
o
d
yta
k
es on t
h
es
h
ape (an
df
unct
i
on) o
f
a suc
ki
ng
di
sc. Some
l
arvae have fore tarsi with numerous setae that filter al
g
ae, etc. from the water and
g
ive th
e
133
PA
LE
O
PTER
A
F
I
GU
RE 6.5
.
L
arva o
f
H
eptagenia
fl
avescen
s
(Hepta
g
en
iid
ae). [From B. D
.
B
urks, 1953, The mayflies, or Ephemeroptera, of Illinois,
B
ull. Ill.
N
at. Hist.
S
urv. 2
6
(
1). By perm
i
ss
i
on o
f
t
h
eI
lli
no
i
s Natura
l
H
i
story Survey.
]
su
b
or
d
er
i
ts name. A
d
u
l
ts are o
f
var
i
e
d
s
i
ze an
d
co
l
or. T
h
e eyes o
f
ma
l
es are
l
arge
b
ut not
cont
ig
uous.
S
uborder Furcatergali
a
The Furcater
g
alia is the lar
g
est ma
y
fl
y
suborder. It name derives from the forked natur
e
of the larval
g
ills. The
g
roup includes five superfamilies: Leptophlebioidea, Behnin
g
ioidea,
E
phemeroidea (burrowing mayflies), Ephemerelloidea, and Caenoidea. The last two super-
f
am
ili
es co
ll
ect
i
ve
l
y
f
orm t
h
e pannote may
fli
es, so-ca
ll
e
db
ecause o
f
t
h
e
f
use
df
ore w
i
ng
pa
d
so
f
t
h
e
l
arvae
.
Superfamily Leptophlebioide
a
T
h
e LEPTOPHLEBIIDAE (a
b
out 380
d
escr
ib
e
d
spec
i
es, represent
i
n
g
per
h
aps on
ly
about 10% of the total) is another lar
g
e and probabl
y
paraph
y
letic
g
roup of worldwid
e
d
istribution but especiall
y
common in the Southern Hemisphere. A
g
ood deal of paralle
l
e
v
o
lution of habits and morphologyappears to have taken placebetween the Leptophlebiida
e
i
nt
h
e Austra
l
as
i
an reg
i
on an
d
t
h
e Baet
id
ae an
d
Heptagen
iid
ae
i
nt
h
e
h
o
l
arct
i
creg
i
on. T
h
us
,
many
l
eptop
hl
e
biid
spec
i
es are
f
oun
d
as
l
arvae
i
nst
ill
or s
l
ow-mov
i
ng water, an
d
,
i
n som
e
instances, the adults closel
y
resemble baetids. Larvae of other species are found clin
g
in
g
to
rocks in fast-flowin
g
waters and resemble hepta
g
eniid larvae
.
Super
f
amily Behningioide
a
All members of this ver
y
small
g
roup (seven extant species) are included in the famil
y
B
EHNINGIIDAE (tuskless burrowing mayflies). The family is holarctic, with representa
-
ti
ves
i
n eastern Europe, S
ib
er
i
a, an
d
T
h
a
il
an
d
,p
l
us one spec
i
es
i
nt
h
e eastern U.S.A. T
h
e
l
arvae are pre
d
aceous an
db
urrow
i
n san
di
nr
i
vers
.
134
CHAPTER
6
S
uper
f
ami
l
yEp
h
emeroi
d
ea
M
ost species in this lar
g
el
y
Northern Hemisphere
g
roup, the tusked ma
y
flies, belon
g
t
o
the EPHEMERIDAE (about 100 species) (Figure 6.6) or the POLYMITARCYIDAE (about
7
0 spec
i
es). Ep
h
emer
id l
arvae
h
ave t
h
et
ibi
ae o
f
t
h
e
f
ore
l
egs mo
difi
e
df
or
b
urrow
i
ng
i
nt
h
e
m
u
d
or san
d
o
fl
ar
g
e
l
a
k
es, r
i
vers, an
d
streams. T
h
e man
dibl
es (tus
k
s) are
l
on
g
an
d
use
df
o
r
l
iftin
g
the roof of the burrow. Most of the bod
y
and the appenda
g
es are covered with fine
hairs. These become coated with silt, and the insect is thereb
y
well camoufla
g
ed. Adults ar
e
genera
ll
ymo
d
erate
l
ys
i
ze
d
to
l
arge
i
nsects. T
h
e
i
rw
i
ngs are
h
ya
li
ne, t
h
oug
h
t
h
ey may
be
spotte
di
n some spec
i
es. In Po
l
ym
i
tarcy
id
ae t
h
em
iddl
e
l
egs an
dhi
n
dl
egs o
f
ma
l
es, an
d
a
ll
l
e
g
so
ff
ema
l
es, are vest
igi
a
l
.L
ik
eep
h
emer
id
s, po
ly
m
i
tarc
yid l
arvae
h
ave
diggi
n
gf
ore
l
e
g
s
and tusks and are burrowers, usuall
y
in mud or fine sand, thou
g
h some tunnel into cla
y
on
the banks of lar
g
e rivers.
S
uper
f
ami
l
yEp
h
emere
ll
oi
d
e
a
With about 100 described s
p
ecies, the EPHEMERELLIDAE is wides
p
read in the hol
-
arct
i
creg
i
on, w
i
t
h
genera a
l
so
i
n Sout
h
Amer
i
ca, As
i
a, an
d
sout
h
ern A
f
r
i
ca. Austra
li
a,
by
c
ontrast,
h
as
b
ut one spec
i
es. Ep
h
emere
llid l
arvae are
f
oun
di
naw
id
evar
i
ety o
f
st
ill
-an
d
m
ovin
g
-water habitats, especiall
y
cold, fast-flowin
g
streams. Adults are small- to medium-
sized ma
y
flies. Members of the related famil
y
TRICORYTHIDAE (about 120 species), a
predominantly Asian, African, and North American group, are generally similar in thei
r
h
a
bi
ts to e
ph
emere
llid
s.
S
uperfami
l
y Caenoi
d
e
a
T
he CAENIDAE (Figure 6.7), with some 80 described species, is a widely distribute
d
f
am
il
yo
f
genera
ll
y sma
ll
may
fli
es. T
h
e
h
a
i
ry
l
arvae spraw
l
on t
h
e sur
f
ace o
ffi
ne se
di
ments
i
n still or slow-movin
g
water. The second pair of
g
ills is enlar
g
ed and stren
g
thened, formin
g
a
135
PA
LE
O
PTER
A
F
I
GU
RE 6.7
.
L
ar
v
ao
f
C
aenis simulans
(
Caenidae
)
. [From B. D. Burks, 19
5
3. Th
e
m
ayflies, or Ephemeroptera, of Illinois,
B
ull. Ill. Nat. Hist.
S
ur
v
.
26
(
1). By permission of
th
eI
lli
no
i
s Natura
l
H
i
stor
y
Surve
y
.
]
plate that overlaps andprotects the remaining four pairs of gills. The plate is alternately raised
an
dl
owere
d
to e
ff
ect water c
i
rcu
l
at
i
on. Ma
l
ean
df
ema
l
ea
d
u
l
ts appear a
l
most
id
ent
i
ca
l
.
Th
e compoun
d
eyes are not espec
i
a
ll
y
l
arge,
b
ut t
h
e
l
atera
l
oce
lli
are a
b
out
h
a
lf
t
h
es
i
ze o
f
t
he compound e
y
es. The hind win
g
s are absent
.
Literatur
e
G
enera
l
accounts o
f
t
h
e structure an
dbi
o
l
ogy o
f
may
fli
es are prov
id
e
db
y Nee
dh
am
et al.
(
193
5)
, Edmund
s
et al.
(
197
6)
, Brittain
(
1982
)
, Edmunds
(
1984
)
, Harker
(
1989
)
, and
Peters and Campbell (1991). More specialized treatments, especiall
y
of life histories, are
given by Clifford (1982) and in the volumes edited by Flannagan and Marshall (1980) an
d
Camp
b
e
ll
(1990). For an apprec
i
at
i
on o
f
t
h
e cont
i
nu
i
ng controversy regar
di
ng t
h
ep
h
y
l
ogen
y
a
n
d
c
l
ass
ifi
cat
i
on o
f
Ep
h
emeroptera, see McCa
ff
erty an
d
E
d
mun
d
s (1979), Lan
d
aan
d
Soldan (198
5
), McCaffert
y
(1991), Bae and McCaffert
y
(199
5
), and Klu
g
e (1998). Edmund
s
et al.
(197
6
) and Edmunds (1984) provide ke
y
s for the North American
g
enera, Maca
n
(1970), Kimmins (1972), and Harker (1989) for the British s
p
ecies, and Peters and Cam
p
bell
(1991)
f
or t
h
e Austra
li
an
f
am
ili
es.
B
ae, Y. J., and McCaffert
y
, W. P., 199
5
, Ephemeroptera tusks and their evolution, in
:
C
urrent Directions in researc
h
o
nE
p
hemero
p
ter
a
(
L. D. Corkum and J. J. H. Ciborowski, eds.), Canadian Scholars’ Press, Toronto.
B
erner, L., an
d
Pesca
d
or, M. L., 1980, T
h
e may
fl
y
f
am
il
y Baet
i
sc
id
ae (Ep
h
emeroptera). Part I,
i
n
:
A
d
vances in
Ep
h
emeroptera Bio
l
ogy (J. F. F
l
anna
g
an an
d
K. E. Mars
h
a
ll
,e
d
s.), P
l
enum Press, New Yor
k.
B
rittain, J. E., 1982, Biology of mayflies
,
A
nnu. Re
v
. Entomol
.
2
7:119–147.
Camp
b
e
ll
, I. C., (e
d
.), 1990
,
M
ayflies an
d
Stoneflies: Life Histories an
d
Bio
l
ogy
,
K
l
uwer, Dor
d
rec
h
t
.
C
liff
or
d
, H. F., 1982, L
if
ec
y
c
l
es o
f
ma
yfli
es (Ep
h
emeroptera), w
i
t
h
spec
i
a
l
re
f
erence to vo
l
t
i
n
i
sm
,
Q
uaest. Entomo
l
.
18
:15–90.
E
dmunds, G. F., Jr., 19
6
2, The principles applied in determining the hierarchic level of the higher categories o
f
Eph
emero
p
tera
,
S
yst. Zoo
l
.
11
:22–
3
1.
E
dmunds, G. F., Jr., 1972, Biogeography and evolution of Ephemeroptera, Annu. Re
v
. Entomol.
1
7
:
21–42
.
Ed
mun
d
s, G. F., Jr., 1984, Ep
h
emeroptera,
i
n: An Intro
d
uction to t
h
e Aquatic Insects of Nort
h
America,2n
d
e
d.
(
R. W. Merr
i
tt an
d
K. W., Cumm
i
ns, e
d
s.), Ken
d
a
ll
/Hunt, Du
b
u
q
ue, IA
.
E
dmunds, G. F., Jr., Jensen, S. L., and Berner, L., 1976
,
T
he Mayflies o
f
North and Central America, University
o
f
M
i
nnesota Press, M
i
nneapo
li
s.
Fl
anna
g
an, J. F., an
d
Mars
h
a
ll
, K. E., (e
d
s.), 1980
,
Ad
vances in Ep
h
emeroptera Bio
l
og
y
,
P
l
enum Press
,
New Yor
k.
136
CHAPTER
6
H
arker
,
J.
,
1989
,
Ma
y
flies
,
Richmond Publishin
g
Co., Slou
g
h, U.K
.
Kimmins, D. E., 1972, A revised key to the adults of the British species of Ephemeroptera with notes on their
e
co
l
o
gy
(secon
d
rev
i
se
d
e
di
t
i
on)
,
S
ci. Pu
bl
. F.W. Bio
l
. Assoc
.
1
5
:
7
5pp
.
Klu
g
e, N. J., 1998, Ph
y
lo
g
en
y
and hi
g
her classification of Ephemeroptera
,
Zoos
y
stemat
i
c
a
7
:2
55
–26
9
.
Landa, V., and Soldan, T., 1985, Phylogeny and higher classification of the order Ephemeroptera: A discussio
n
f
rom t
h
e com
p
arat
i
ve anatom
i
ca
lp
o
i
nt o
f
v
i
ew , Stu
d
ie Cs
l
. Aca
d
.Ve
d.
4
:
1–121
.
Macan, T. T., 1970, A ke
y
to the n
y
mphs of British species of Ephemeroptera (2nd revised ed.),
S
ci. Publ. F.
W
.
B
io
l
. Assoc.
2
0:63 pp
.
Ma
i
orana, V. C., 1979, W
hy d
oa
d
u
l
t
i
nsects not mou
l
t
?
B
io
l
.
J
. Linn.
S
oc.
11
:2
5
3–2
5
8.
McCafferty, W. P., 1991, Toward a phylogenetic classification of the Ephemeroptera (Insecta): A commentary o
n
systemat
i
cs
,
A
nn. Entomo
l
. Soc. Am.
84
:343–360
.
McCa
ff
ert
y
,W.P.,an
d
E
d
mun
d
s, G. F., Jr., 1979, T
h
e
high
er c
l
ass
ifi
cat
i
on o
f
t
h
eEp
h
emeroptera an
di
ts evo
l
ut
i
onar
y
b
asis, Ann. Entomol.
S
oc. Am
.
7
2:
5
–12
.
Needham. J. G., Traver, J. R., and Hsu, Y C., 1935
,
Th
e Bio
l
ogy of Mayflies
,
Comstoc
k
,NewYor
k
.
P
eters, W. L., an
d
Cam
pb
e
ll
, I. C., 1991, E
ph
emero
p
tera,
i
n:
Th
e Insects of Austra
l
i
a
,2n
d
e
d
., Vo
l
.I
(
CSIRO, e
d
.
)
,
Melbourne University Press, Carlton, Victoria.
Wang, T. W., and McCafferty, W. P., 1995, Relationships of the Arthropleidae, Heptageniidae, and Pseudironidae
(Ep
h
emeroptera: Hepta
g
en
i
o
id
ea)
,
Entomo
l
Ne
ws
106
:2
5
1–2
5
6.
3.
O
donat
a
S
ynonym:
P
araneuropter
a
C
ommon names:
d
ragonflies and damselflie
s
Ad
u
l
ts me
di
um-s
i
ze
d
to
l
arge e
l
ongate
i
nsects,
f
requent
l
y str
iki
ng
l
y mar
k
e
d
;
h
ea
d
w
i
t
h
antenna
e
s
h
ort an
d
setaceous, compoun
d
e
y
es prom
i
nent,
bi
t
i
n
g
mout
h
parts; t
h
orax w
i
t
h
two pa
i
rs o
f
m
embranous wings of approximately equal size and with netlike venation, pterostigma usually
p
resent; a
bd
omen o
f
ma
l
ew
i
t
h
copu
l
ator
y
or
g
ans on secon
d
an
d
t
hi
r
d
sterna
.
Larvae aquat
i
c;
b
o
d
y campo
d
e
if
orm;
h
ea
d
equ
i
ppe
d
w
i
t
h
extens
ibl
e “mas
k
” (mo
difi
e
dl
a
bi
um)
for catchin
g
pre
y
, antennae small, compound e
y
es lar
g
e; abdomen terminated with three pro-
c
esses, either short and stocky or extended into large lamellate structures.
Almost 5000 s
p
ecies of Odonata have been identified from different areas of the world.
A
bout 10% of these are from North America. Some 45 s
p
ecies are found in the Britis
h
f
auna, an
d
300 spec
i
es
h
ave
b
een
d
escr
ib
e
df
rom Austra
li
a.
Structur
e
A
du
lt
.
Th
e
b
o
d
yo
f
a
d
u
l
tO
d
onata
i
s remar
k
a
bl
e
f
or
i
ts co
l
ors,
b
ot
h
p
i
gmentary
an
d
structura
l
,t
h
at
f
requent
ly f
ormac
h
aracter
i
st
i
c pattern over t
h
e
d
orsa
l
re
gi
on (F
ig
ure
6
.12A). Most adults ran
g
e from 30 to 90 mm in len
g
th and are sturd
y
, activel
y
fl
y
in
g
insects.
The head is freel
y
articulated with the thorax, and a lar
g
e part of its surface, especiall
y
in
A
n
i
soptera (
d
ragon
fli
es),
i
s occup
i
e
db
yt
h
ewe
ll
-
d
eve
l
ope
d
compoun
d
eyes. T
h
ree oce
lli
f
ormatr
i
ang
l
eont
h
e vertex. T
h
e antennae are s
h
ort,
h
a
i
r
lik
e structures t
h
at apparent
l
y carry
f
ew sense or
g
ans. T
h
e mout
h
parts are power
f
u
l
structures o
f
t
h
e
bi
t
i
n
g
an
d
c
h
ew
i
n
g
t
y
pe
.
The thorax is somewhat parallelo
g
ram-shaped, with the le
g
s placed anteroventrall
y
and the
w
in
g
s situated posterodorsall
y
. The prothorax is distinct but small, and in female Z
yg
opter
a
(
damselflies) is sculptured so as to articulate with the claspers of the male during mating.
T
h
e mesot
h
orax an
d
metat
h
orax are
l
arge an
df
use
d
toget
h
er. T
h
ep
l
eura o
f
t
h
ese segment
s
are very
l
arge an
d
possess prom
i
nent su
l
c
i
.T
h
e
l
egs are wea
k
an
d
unsu
i
ta
bl
e
f
or wa
lki
ng.
The
y
serve to
g
rasp the pre
y
and hold it to the mouth durin
g
feedin
g
.InZ
yg
optera the for
e
and hind win
g
s are almost identical; in Anisoptera the hind win
g
is somewhat broader nea
r
137
PA
LE
O
PTER
A
t
he base. A prominent pterosti
g
ma (see Fi
g
ure 3.27) is present on each win
g
in all except a
few species. The win
g
venation is a primitive netlike arran
g
ement. Ten abdominal se
g
ments
are visible with se
g
ments 1–8 bearin
g
spiracles. In male Odonata the sternum of se
g
ment 2
i
s groove
d
an
d
t
h
at o
f
segment 3
b
ears copu
l
atory structures use
di
nt
h
e trans
f
er o
f
sperm t
o
(somet
i
mes a
l
so
f
rom) t
h
e
f
ema
l
e gen
i
ta
l
tract. T
h
e true gen
i
ta
l
open
i
ng
i
s
l
ocate
db
e
hi
n
d
th
en
i
nt
h
sternum. In
f
ema
l
eZ
yg
optera an
d
man
y
An
i
soptera t
h
at are en
d
op
hy
t
i
c(
l
a
y
t
h
e
ir
e
gg
s into plant tissues) a well-developed ovipositor is present. In exoph
y
tic Anisoptera it i
s
reduced or absent
.
Most
i
nterna
l
organs are great
l
ye
l
ongate
db
ecause o
f
t
h
e narrow
b
o
d
y. T
h
e testes exten
d
f
rom a
bd
om
i
na
l
segments 4–8 an
d
t
h
eovar
i
es occupy t
h
ew
h
o
l
e
l
engt
h
o
f
t
h
ea
bd
omen.
B
etween
5
0 and 70 Malpighian tubules, united in groups of
5
or 6, enter the alimentary
canal at the
j
unction of the mid
g
ut and hind
g
ut. The respirator
y
s
y
stem is well developed
and in man
y
species includes a lar
g
e number of air sacs in the thoracic re
g
ion. The nervous
system is generally primitive, although the brain is enlarged transversely due to the presence
o
fl
arge opt
i
c
l
o
b
es.
La
r
v
a.
O
donate larvae are usuall
y
shorter and stockier than adults. In
g
eneral th
e
larval head resembles that of the adult, thou
g
h it differs in possession of the “mask,” th
e
elongated labium (Figure 6.8), used to capture prey. At rest the mask (so-called becaus
e
i
to
f
ten covers t
h
eot
h
er mout
h
parts)
i
s
f
o
ld
e
d
at t
h
e
j
unct
i
on o
f
t
h
e postmentum an
d
prementum an
dh
e
ld b
etween t
h
e
b
ases o
f
t
h
e
l
egs. It
i
s exten
d
e
d
extreme
l
y rap
idl
y(
i
n
about 16–2
5
msec) b
y
means of localized blood pressure chan
g
es, assisted b
y
the release
of tension in the labial lockin
g
muscles, and the pre
y
is
g
rasped b
y
the labial palps. In
contrast to those of adults, the legs are normally positioned on the thorax, well develope
d
an
d
qu
i
te
l
ong. At t
h
et
i
po
f
t
h
ea
bd
omen t
h
ere are t
h
ree appen
d
ages, one me
di
o
d
orsa
l
an
d
t
wo
l
atera
l
(t
h
e cerc
i
). T
h
ese are sma
ll i
nAn
i
soptera
b
ut en
l
arge
d
to
f
orm cau
d
a
ll
ame
ll
ae
in Z
yg
optera.
I
nternall
y
larvae differ from adults in several features. In the fore
g
ut there is a well
-
d
eveloped gizzard for breaking up food. There are initially only a few Malpighian tubules
,
th
oug
h
t
h
e num
b
er
i
ncreases
i
n eac
hi
nstar. In a
ll
o
d
onate
l
arvae, some gaseous exc
h
ang
e
t
a
k
es p
l
ace
di
rect
l
y across t
h
e
b
o
d
ywa
ll
,
i
nc
l
u
di
ng t
h
ew
i
ng pa
d
s, an
d
v
i
at
h
ewa
ll
o
f
t
h
e
rectum. In addition, larvae have special respirator
y
structures. In Anisoptera the wall of
t
he rectum is
g
reatl
y
folded and well supplied with tracheae, formin
g
“rectal
g
ills.” Water
F
I
G
URE 6.8
.
L
ateroventra
l
v
i
ew
of head of dra
g
onfl
y
larva show
-
i
ng mask. [After A. D. Imms, 1957,
A Genera
l
Text
b
oo
k
of Entomo
l
ogy
,
9th ed. (revised b
y
O. W. Richards an
d
R
. G. Davies), Methuen and Co.]
138
CHAPTER
6
i
s continuall
y
pumped in and out of the rectum. Interestin
g
l
y
, the musculature used to
v
entilate the rectal
g
ills serves also to
j
et propel the larva in swimmin
g
and to extend th
e
l
abium for pre
y
capture! In Z
yg
optera the caudal lamellae appear to supplement the surface
area ava
il
a
bl
e
f
or gaseous exc
h
ange (a
l
t
h
oug
hi
n
hi
g
hl
y oxygenate
d
water
l
arvae appea
r
to surv
i
ve per
f
ect
l
ywe
ll
w
h
en t
h
e
l
ame
ll
ae are remove
d
). In a
f
ew Zygoptera pa
i
re
d
g
ills
o
ccur on most a
bd
om
i
na
l
se
g
ments, w
hil
e
i
n Amp
hi
pter
ygid
ae
fil
amentous per
i
ana
l gills
develo
p
. (See also Cha
p
ter 15, Section 4.1.)
L
ife Histor
y
and Habit
s
A
f
ter emer
g
ence,
i
mmature a
d
u
l
tO
d
onata spen
d
some t
i
me awa
yf
rom water, usua
lly
amon
g
trees or tall
g
rass where the
y
hunt for pre
y
and become sexuall
y
mature. It is durin
g
this maturation phase that some Odonata mi
g
rate over lon
g
distances. The maturation period,
w
hich lasts anywhere from a few days in smaller species to a month in large dragonflies, is
f
o
ll
owe
db
yt
h
e repro
d
uct
i
ve p
h
ase
i
nw
hi
c
h
mat
i
ng an
d
ov
i
pos
i
t
i
on occur. Usua
ll
yt
h
es
e
two processes occur at t
h
e same s
i
te, a
l
t
h
oug
h
t
hi
s
i
s not necessar
il
y so.
M
ature adult Odonata
g
enerall
y
can be classified as “perchers” or “fliers,” the forme
r
spendin
g
most of their time perched and makin
g
onl
y
short fli
g
hts, while the latter, whe
n
active, fly continuously. Adults feed throughout their life, Zygoptera often catching station-
ary prey w
h
ereas An
i
soptera most
l
y capture t
h
e
i
r prey
i
n
fli
g
h
t, occas
i
ona
ll
y aggregat
i
n
g
i
n
l
arge num
b
ers w
h
ere prey
i
s concentrate
d
.Ma
l
es o
f
many spec
i
es are terr
i
tor
i
a
l
,t
h
a
t
i
s, the
y
occup
y
and defend an area a
g
ainst other males. Perchers have a base from whic
h
the
y
undertake patrol fli
g
hts or sallies a
g
ainst intruders while fliers patrol the area contin
-
uously for extended periods. Other species show little or no spatial territoriality, though
m
ay
b
e
h
ave aggress
i
ve
l
y aga
i
nst conspec
ifi
cs t
h
ey encounter, a
f
eature t
h
at ensures t
he
spac
i
ng out o
f
ma
l
es w
i
t
hi
na
h
a
bi
tat. Some
fli
ers are terr
i
tor
i
a
lf
or severa
l
s
h
ort (10–40
mi
nutes) per
i
o
d
st
h
rou
gh
out t
h
e
d
a
y
,
b
etween w
hi
c
h
t
h
e
yl
eave t
h
e area, a
ll
ow
i
n
g
ot
h
er
c
onspecific males to occup
y
the space. Should a receptive female conspecific enter the
territor
y
and be reco
g
nized b
y
the male (probabl
y
usin
g
visual cues), he will attempt t
o
m
ate w
i
t
hh
er. Us
i
ng
hi
s
l
egs t
h
ema
l
e grasps t
h
e
f
ema
l
eont
h
e pterot
h
orax, t
h
en cur
l
s
hi
sa
bd
omen aroun
d
so as to
b
ea
bl
etogr
i
pt
h
e
f
ema
l
e’s prot
h
orax (Zygoptera) or
h
ea
d
(
An
i
soptera) w
i
t
hhi
sc
l
aspers (t
h
e tan
d
em pos
i
t
i
on). As note
d
a
b
ove, t
h
e compat
ibili
t
y
o
f
the male and female structures are ke
y
determinants of the conspecificit
y
of the partners
.
The male’s le
g
s then release their
g
rip, and the female bends her abdomen forward until
i
ts tip contacts the accessory genitalia on the male’s second and third abdominal segment
s
(
the wheel position) (Figure 6.9). Earlier, it was assumed that the sole purpose to this was
t
h
e trans
f
er o
f
sperm
f
rom ma
l
eto
f
ema
l
e. However,
i
n pro
b
a
bl
ya
ll
spec
i
es t
h
at sett
l
ea
f
te
r
takin
g
up the wheel position, the ma
j
or portion of the time spent in copulation (which ma
y
l
ast up to 30 minutes) is taken up b
y
the male’s penis removin
g
much (40–100% dependin
g
o
n the species) of the sperm of a previous mating from the female’s bursa copulatrix and
spermat
h
eca,
b
e
f
ore
i
nsem
i
nat
i
on occurs. Sperm
di
sp
l
acement a
l
so occurs
i
nt
h
e
lib
e
l
1u
lid
Er
y
t
h
emis (Lept
h
emis) simp
l
ico
ll
i
s
wh
ere copu
l
at
i
on
l
asts
l
ess t
h
an 20 secon
d
s. W
h
et
h
er
the phenomenon is widespread amon
g
species that copulate for such brief periods (usuall
y
i
nfli
g
ht) or whether sperm packin
g
occurs (sperm from earlier matin
g
s is pushed more
deepl
y
into the spermatheca while that of the most recent matin
g
remains ad
j
acent to th
e
spermat
h
eca
l
open
i
ng so t
h
at
d
ur
i
ng ov
i
pos
i
t
i
on
i
t
i
s use
d
pre
f
erent
i
a
ll
y) requ
i
res
f
urt
h
er
stu
d
y. Certa
i
n
l
y,
h
owever, t
h
e structures o
fb
ot
h
t
h
e pen
i
san
d
t
h
e
f
ema
l
e storage organ
s
i
n some an
i
sopteran
f
am
ili
es are ver
y diff
erent
f
rom t
h
ose o
f
Z
yg
optera w
hi
c
hh
ave
b
een
139
PA
LE
O
PTER
A
F
IGURE 6.9. Copulating damselflies. [After E. M. Walker, 1953. The Odonata o
f
Canada and Alaska
,V
ol. I.
VV
By
perm
i
ss
i
on o
f
t
h
eUn
i
vers
i
t
y
o
f
Toronto Press.
]
mostl
y
studied, su
gg
estin
g
that sperm packin
g
ma
y
be more common in Anisoptera (Waa
g
e,
1984).
Ov
i
pos
i
t
i
on usua
ll
y occurs soon a
f
ter copu
l
at
i
on, an
di
n many O
d
onata t
h
ema
l
e re-
ma
i
ns c
l
ose to (
h
over
i
ng or perc
hi
ng near
b
y) or
i
n tan
d
em w
i
t
h
t
h
e
f
ema
l
e, t
h
e
i
ntens
i
ty o
f
th
e assoc
i
at
i
on
b
e
i
ng corre
l
ate
d
w
i
t
h
t
h
e pro
b
a
bili
ty o
f
ot
h
er ma
l
es
di
stur
bi
ng t
h
e
f
ema
l
e.
T
erritorial males usuall
y
adopt the first of these strate
g
ies, whereas non-territorial forms
ty
picall
y
remain in tandem. Species that oviposit in leaves and stems of plants or wood
y
material are typically quite selective in their choice of sites (a feature that may be correlated
wi
t
h
t
h
e
i
r
lif
e
hi
story strategy) (see a
l
so C
h
apter 23, Sect
i
on 3.2.1) an
dh
ave e
l
ongate eggs
.
O
f
ten, t
h
e
f
ema
l
ec
li
m
b
s a cons
id
era
bl
e
di
stance
b
e
l
ow t
h
e water sur
f
ace
b
e
f
ore
l
ay
i
ng t
h
e
e
gg
s. Exoph
y
tic species that oviposit in ponds or swamps ma
y
simpl
y
release their e
ggs
into the water, or stick them on or under a leaf or on mud. However, the e
gg
s of stream- or
river-dwelling species may be deposited above the water level or have hooks that catch on
su
b
merge
d
o
bj
ects.
Embryonic development is usually direct, the eggs hatching within
5
–40 days; however,
i
n some temperate spec
i
es t
h
ee
gg
s serve as t
h
e overw
i
nter
i
n
g
sta
g
ean
d
un
d
er
g
o
di
apause.
T
he first larval instar, known as the
p
rolarva, does not feed and its sole
p
ur
p
ose is to
reach a suitable bod
y
of water. Immediatel
y
this is achieved (which ma
y
take from les
s
th
anam
i
nute u
p
to severa
lh
ours), t
h
e
p
ro
l
arva mo
l
ts. Secon
d
-
i
nstar an
d
o
ld
er
l
arvae
are
f
acu
l
tat
i
ve pre
d
ators,
f
ee
di
ng on w
h
atever an
i
ma
l
so
f
appropr
i
ate s
i
ze are ava
il
a
bl
e
.
Detect
i
on o
f
pre
yi
sac
hi
eve
d
pr
i
m
i
t
i
ve
ly
t
h
rou
gh
t
h
e use o
fb
ot
h
v
i
sua
l
an
d
contact sense
or
g
ans. In advanced species the e
y
es become of primar
y
importance. Odonate larvae ar
e
t
hemselves pre
y
ed on b
y
aquatic vertebrates and other aquatic insects, includin
g
lar
g
er
mem
b
ers o
f
t
h
e same or
d
er, t
h
oug
hi
ntraspec
ifi
c cann
ib
a
li
sm
i
s very rare as a resu
l
to
f
t
err
i
tor
i
a
lb
e
h
av
i
or among s
i
m
il
ar
l
ys
i
ze
dl
arvae an
db
ecause age co
h
orts w
i
t
hi
n a spec
i
es
t
en
d
to
b
e spat
i
a
lly
separate
d
(e.
g
.,
by
pre
f
err
i
n
g
perc
h
es o
f diff
erent
di
ameters). Larvae o
f
most Odonata inhabit permanent waters either still or flowin
g
. Those of man
y
species live
in burrows in the substrate, whereas most others, especiall
y
Z
yg
optera, are
g
enerall
y
found
perc
h
e
d
on
d
etr
i
tus or aquat
i
cp
l
ants w
h
ere t
h
e
i
rco
l
or prov
id
es camou
fl
age. W
h
en
d
etecte
d
,
th
ese
l
arvae can escape rap
idl
y
b
ye
i
t
h
er expe
lli
ng water
f
rom t
h
e recta
l
cav
i
ty—a
f
orm
o
fj
et propu
l
s
i
on (An
i
soptera)—or us
i
ng rap
id
un
d
u
l
at
i
ng movements o
f
t
h
ea
bd
omen an
d
caudal lamellae (Z
yg
optera). A relativel
y
few species have colonized temporar
y
bodies o
f
140
CHAPTER
6
w
ater throu
g
h the use of such strate
g
ies as ver
y
rapid
g
rowth or burrowin
g
into the substrate
to avoid desiccation. Ver
y
rarel
y
species have semiaquatic larvae or larvae that live in moist
l
itter in rain forests. The ma
j
orit
y
of Odonata are warm-temperate or tropical species i
n
whi
c
hl
arva
ld
eve
l
opment
i
s rap
id
so t
h
at one to severa
l
generat
i
ons may
b
e comp
l
ete
d
eac
h
year, w
i
t
h
temperature an
d
ava
il
a
bili
ty o
ff
oo
db
e
i
ng t
h
ema
j
or
d
eterm
i
nants o
fl
arva
l
growt
h
rate. In
high
er
l
at
i
tu
d
es spec
i
es ma
yb
eun
i
vo
l
t
i
ne (one
g
enerat
i
on per
y
ear), sem
i
vo
l
t
i
ne
(
takin
g
2
y
ears to complete development), or take up to
6y
ears to develop (the duration o
f
development can var
y
within a species over its ran
g
e). T
y
picall
y
, these Odonata overwinter
i
n a temperature an
d
/or p
h
otoper
i
o
di
ca
ll
y contro
ll
e
ddi
apause
i
nt
h
e
l
arva
l
stage, t
h
oug
h
some spec
i
es pass t
h
ew
i
nter as eggs. D
i
apause, toget
h
er w
i
t
hi
nstar-spec
ifi
c temperatur
e
t
h
res
h
o
ld
s
f
or
d
eve
l
opment, ensures t
h
at a
d
u
l
t emergence t
h
e
f
o
ll
ow
i
ng spr
i
ng
i
s
hi
g
hly
s
y
nchronized, thus improvin
g
the chances of successful reproduction. Larvae pass throu
g
h
1
0–15 instars. Late in the final stadium, the larval
g
ills cease to function and the pharate adul
t
c
rawls to the water surface to breathe air through the mesothoracic spiracles. Immediately
pr
i
or to ec
d
ys
i
s, t
h
ep
h
arate a
d
u
l
tc
li
m
b
s out o
f
t
h
e water on a su
i
ta
bl
e support;
i
tt
h
e
n
swa
ll
ows a
i
rtosp
li
tt
h
e exuv
i
um an
d
expan
d
t
h
ea
bd
omen an
d
w
i
ngs. In warmer reg
i
ons
m
an
y
lar
g
er Anisoptera emer
g
eatni
g
ht, perhaps to avoid predation; elsewhere, emer
g
enc
e
o
ccurs throu
g
h the da
y
and is dependent on a threshold temperature bein
g
achieved.
P
hylogeny and Classificatio
n
In contrast to that of the other paleopteran order, the Ephemeroptera, the fossil record
o
f the Odonata is remarkabl
y
extensive. Carpenter (1992) su
gg
ested that the aquatic
j
u-
v
enile sta
g
e and the tendenc
y
of adults to remain near water would favor the fossilizatio
n
of
t
h
ese genera
ll
yro
b
ust
i
nsects. Accor
di
ng to Carpenter (1992), t
h
e ear
li
est o
d
onates
(f
rom t
h
e Perm
i
an)
b
e
l
onge
d
to t
h
e ent
i
re
l
y
f
oss
il
su
b
or
d
ers Protan
i
soptera an
d
Arc
hi
zy-
g
optera. Ot
h
er su
b
or
d
ers
i
nc
l
u
d
et
h
eTr
i
a
d
op
hl
e
bi
omorp
h
a(Tr
i
ass
i
c), An
i
soz
yg
optera
(
Triassic—Cretaceous), Anisoptera (Jurassic—Recent) and Z
yg
optera (Jurassic—Recent).
The Odonata underwent a rapid evolution durin
g
the Triassic period, and in the Jurassic
P
er
i
o
d
,An
i
sozygoptera were espec
i
a
ll
ya
b
un
d
ant. Or
i
g
i
na
ll
y, two extant spec
i
es o
f
Ep
i
o-
p
hl
e
b
i
a
,d
escr
ib
e
df
rom Japan an
d
t
h
eH
i
ma
l
ayas, were p
l
ace
di
nt
hi
ssu
b
or
d
er. However,
wi
t
h
more
i
n
f
ormat
i
on
i
t
h
as
b
ecome c
l
ear t
h
a
t
E
p
io
phl
e
b
i
a
i
sanear
l
yan
i
sopteran o
ff
s
h
oot,
i
n the superfamil
y
Epiophlebioidea. B
y
the Late Jurassic, representatives of recent families
o
fZ
yg
optera and Anisoptera were alread
y
in existence
.
Some early authorities suggested that ancient zygopterans were the group from whic
h
t
h
e rema
i
n
i
ng O
d
onata evo
l
ve
d
.Int
hi
s proposa
l
,anear
l
y
di
c
h
otomy
l
e
d
,ont
h
e one
h
an
d
,to
t
h
emo
d
ern groups o
f
Zygoptera, an
d
,ont
h
eot
h
er, t
h
roug
h
t
h
eAn
i
sozygoptera to t
h
e
A
nisoptera. However, the abundant fossil evidence for the Odonata shows that these three
suborders arose contemporaneousl
y
; that is, no one suborder
g
ave rise to the others. Th
e
hi
g
her-level relationships of Odonata remain controversial, with markedl
y
different h
y-
pot
h
eses
b
e
i
ng generate
d
,
d
epen
di
ng on t
h
e type an
d
quant
i
ty o
fi
n
f
ormat
i
on use
di
nt
h
e
analysis (compare Trueman [199
6
], Bechl
y
et a
l
. [1998], M
i
so
f
[2002], an
d
Re
h
n [2003])
.
T
h
us, at one extreme, t
h
e quest
i
on o
f
w
h
et
h
er t
h
eZ
yg
optera are monop
hyl
et
i
c cont
i
nue
s
to be debated, while at the other, the make-up of some families (i.e., whether the
y
are
m
onoph
y
letic, paraph
y
letic, or pol
y
ph
y
letic) remains unresolved. A su
gg
ested proposa
l
f
or the relationships of the extant groups of Odonata is shown in Figure 6.10. In thi
s
sc
h
eme t
h
e monop
h
y
l
et
i
c Zygoptera
f
a
ll i
nto t
h
ree super
f
am
ili
es, Ca
l
opterygo
id
ea
b
e
i
n
g
t
h
es
i
ster
g
roup to t
h
e Lest
i
no
id
ea (parap
hyl
et
i
c
)
+
C
oena
g
r
i
ono
id
ea. In t
h
eAn
i
soptera, t
h
e
141
PA
LE
O
PTER
A
FIGURE 6.10.
P
ropose
d
p
h
y
l
ogeny o
f
extant O
d
onata
.
E
p
i
op
hl
e
bi
o
id
ea
f
orm t
h
es
i
ster group to a
ll
ot
h
ers. O
f
t
h
ese, t
h
e very pr
i
m
i
t
i
ve Peta
l
ur
id
ae
f
orm t
h
es
i
ster group to t
h
e rema
i
n
i
ng true
d
ragon
fli
es.
S
u
b
or
d
er Z
yg
optera (Damse
l
flies
)
Damse
lfli
es are c
h
aracter
i
ze
db
yt
h
e
f
o
ll
ow
i
ng structura
lf
eatures:
f
ore an
dhi
n
d
w
i
ng
s
a
l
most
id
ent
i
ca
li
ns
h
ape an
d
venat
i
on, qua
d
ran
g
u
l
ar
di
sco
id
a
l
ce
ll
never
l
on
gi
tu
di
na
lly
d
ivided, e
y
es far apart, and larvae with three (rarel
y
two) caudal lamellae
.
Super
f
amily Coenagrionoide
a
Most of the 1500 species of Coena
g
rionoidea fall into four families. The paraph
y
leti
c
famil
y
COENAGRIONIDAE is the most successful z
yg
opteran
g
roup, containin
g
more
th
an 1000 spec
i
es. T
h
e
f
am
il
yasaw
h
o
l
e
i
s cosmopo
li
tan, an
d
certa
i
n genera,
f
or examp
l
e
,
Coena
g
rio
n
an
d
Is
c
h
nur
a
(
Figure 6.11), are found throughout the world. Larvae are found
among vegetat
i
on
i
nst
ill
or s
l
ow
l
ymov
i
ng water. T
h
e genera
ll
y sma
ll
a
d
u
l
ts are wea
kfli
er
s
and rest with their narrow win
g
s closel
y
apposed over the bod
y
. The sexes are differentl
y
colored, with males usuall
y
much bri
g
hter. Commonl
y
, the dorsal surface of males is
a
complex pattern of pale blue and black markings. Females are usually drab in color and
i
n some spec
i
es t
h
ere may
b
e two or more co
l
or
f
orms. Pru
i
nescence, t
h
e
d
eve
l
opment o
f
aw
a
xy, w
hi
t
i
s
h
to pa
l
e
bl
ue secret
i
on,
i
s seen
i
no
ld
er spec
i
mens o
fb
ot
h
sexes
i
n some
species. PLATYCNEMIDIDAE (1
5
0 species) are common in the palearctic, oriental, and
t
ropical African re
g
ions where the
y
breed in swamps, forests, streams, and fast-flowin
g
w
ater. The PROTONEURIDAE (220 species) are a widespread group, though absent from
th
epa
l
earct
i
creg
i
on. T
h
ey are most common
i
ns
h
a
d
e
dl
oca
li
t
i
es,
i
nc
l
u
di
ng
f
orests, an
d
b
ree
di
ns
l
ow
l
ymov
i
ng water. Most o
f
t
h
e 130 spec
i
es o
f
PLATYSTICTIDAE are or
i
enta
l
th
ou
gh
some spec
i
es occur
i
nt
h
eNewWor
ld
trop
i
cs. T
y
p
i
ca
lly
,t
h
e
y
are
f
oun
di
n
f
orests,
b
reedin
g
in fast-flowin
g
streams.
142
CHAPTER
6
F
IGURE 6.11
.
A damselfly
,
Ischnura cervul
a
(Coenagrionidae). (A) Adult male; and (B,C) larva, dorsal and
l
atera
l
v
i
ews. [Repro
d
uce
dby
perm
i
ss
i
on o
f
t
h
eSm
i
t
h
son
i
an Inst
i
tut
i
on Press
f
rom
S
mit
h
sonian Institution Unite
d
S
tates National Museum Proceedin
gs
,V
olume 49, ‘Notes on the life history and ecology of the dragonflies
VV
(Odonata) of Washington and Oregon,’ July 28, 1915, by C. H. Kennedy: Figures 77, 120, and 121. Washington
,
D
.C., U.S. Government Printin
g
Office, 191
6
.]
S
uper
f
ami
l
y Lestinoi
d
e
a
About three quarters of the Lestinoidea are arranged in two families, the cosmopoli-
tan LESTIDAE (140 spec
i
es) an
d
t
h
epr
i
mar
i
1y trop
i
ca
l
MEGAPODAGRIONIDA
E
(
200 spec
i
es). Lest
id
s are me
di
um-s
i
ze
d
, meta
lli
ca
ll
yco
l
ore
di
nsects t
h
at typ
i
ca
ll
y rest
w
ith their win
g
s partiall
y
or comp1etel
y
outspread. The
y
are found near still water or quiet
streams. E
gg
s are laid in emer
g
ent ve
g
etation and those of temperate species often show de-
l
a
y
ed development, an adaptation to overcome adverse climatic conditions such as drou
g
ht
o
rco
ld
. Larvae are e
l
ongate, stream
li
ne
d
creatures, o
f
ten we
ll
camou
fl
age
d
. Megapo
d
agr
i-
o
n
id
s occur ma
i
n
l
y
i
n
f
orests,
b
ree
di
ng
i
n streams, mars
h
yp
l
aces, an
d
occas
i
ona
ll
y tre
e
h
o
l
es;
h
owever, some spec
i
es
b
ree
di
n temporar
y
swamps. Larvae are s
h
ort an
d
t
hi
c
k
,w
i
t
h
the caudal lamellae held horizontall
y
, not verticall
y
as in other Z
yg
optera.
S
uper
f
ami
l
yCa
l
opterygoi
d
e
a
M
embers of the cosmopolitan family CALOPTERYGIDAE (160 species) are mediu
m
to
l
arge,
b
roa
d
-w
i
nge
dd
amse
lfli
es c
h
aracter
i
ze
db
yt
h
e
b
r
illi
ant meta
lli
cco
l
or
i
ng o
f
t
h
e
ir
b
o
di
es, an
d
,
i
nma
l
es, t
h
ew
i
ngs a
l
so. Larva
l
Ca
l
opteryg
id
ae are
f
oun
d
at t
h
e marg
i
ns
o
f fast-flowin
g
water; the
y
have relativel
y
lon
g
and stout antennae, lon
g
spider
y
le
g
s
,
and elon
g
ate caudal lamellae. CHLOROCYPHIDAE (120 species) are primaril
y
restricte
d
to tropical Africa and Asia, though there are old reports of their occurrence in north
-
e
rn Austra
li
a. In t
h
e
l
arva t
h
e
d
orsa
l
cau
d
a
ll
ame
ll
a, somet
i
mes a
ll
t
h
ree
l
ame
ll
ae, ar
e
sp
ik
e
lik
e
.
143
PA
LE
O
PTER
A
S
uborder Anisoptera (Dragonflies)
D
i
st
i
ngu
i
s
hi
ng
f
eatures o
fd
ragon
fli
es
i
nc
l
u
d
e
f
ore an
dhi
n
d
w
i
ngs
di
ss
i
m
il
ar
i
n venat
i
o
n
an
d
, usua
lly
,s
h
ape;
di
sco
id
a
l
ce
ll di
v
id
e
di
nto two tr
i
an
g
u
l
ar areas; e
y
es cont
ig
uous or near
ly
so; and larvae stout and without caudal lamellae
.
Super
f
ami
l
y Aes
h
noi
d
e
a
T
h
e sout
h
Austra
li
an an
d
Sout
h
Amer
i
can
f
am
il
y NEOPETALIIDAE (n
i
ne spec
i
es
)
conta
i
ns t
h
e most pr
i
m
i
t
i
ve o
f
recent
d
ragon
fli
es. T
h
e PETALURIDAE (11 spec
i
es)
i
sa
l
so
an arc
h
a
i
c
f
am
ily
w
i
t
hi
nw
hi
c
h
are
f
oun
d
t
h
ewor
ld
’s
l
ar
g
est extant spec
i
es w
i
t
h
w
i
n
g
spans
of more than 1
6
cm. Their larvae are semiaquatic burrowers, livin
g
in swamps or beside
steams. The AESHNIDAE form a lar
g
e and cosmopolitan famil
y
of about 375 species of
large, strongly flying insects characterized by their enormous eyes that meet broadly in th
e
m
idli
ne o
f
t
h
e
h
ea
d
. Larvae are most
l
y stout, e
l
ongate
i
nsects
f
oun
d
among vegetat
i
on
i
n
a
var
i
ety o
f
st
ill
-ormov
i
ng-water
h
a
bi
tats; a
f
ew ,
h
owever, are sem
i
-terrestr
i
a
l
or terrestr
i
a
l.
T
he GOMPHIDAE (800 species) is another primitive famil
y
whose adults have widel
y
separated e
y
es and are
g
enerall
y
black and
y
ellow, with one or the other color predominatin
g
according to the habitat in which they are found. They have a rudimentary ovipositor, and
eggs are
l
a
id b
ys
i
mp
l
y
di
pp
i
ng t
h
et
i
po
f
t
h
ea
bd
omen
i
nto t
h
e water. T
h
oug
h
some gomp
hid
s
b
ree
di
nst
ill
or s
l
ugg
i
s
h
waters, most
b
ree
di
n
fl
ow
i
ng water, an
d
o
f
ten t
h
e
i
r eggs
h
av
e
an adhesive exochorion or ropelike filaments that ma
y
prevent their bein
g
washed awa
y
.
G
omphid larvae are burrowers or sprawlers in the substrate, and some burrowin
g
species
h
ave a
g
reatl
y
elon
g
ated 10th abdominal se
g
ment in order to retain respirator
y
contact wit
h
th
e water an
df
ossor
i
a
lf
ore
l
egs.
Superfamily Cordulegastroidea
This superfamil
y
contains onl
y
one small famil
y
CORDULEGASTRIDAE (
6
0
species), with a palearctic and oriental distribution. Its members carr
y
a combination of
aeshnoid and libelluloid characters. Some species are open-countr
y
forms that breed in
sma
ll p
on
d
s or streams; ot
h
ers are assoc
i
ate
d
w
i
t
h
mounta
i
n streams.
Superfamily Libelluloidea
Both the CORDULIIDAE (Figure
6
.12) and the LIBELLULIDAE are large, cosmopoli-
t
an families, thou
g
h the former is a paraph
y
letic
g
roup. Corduliids (3
6
0 species) breed i
n
a ran
g
e of still- and movin
g
-water habitats, includin
g
temporar
y
pools and swamps, an
d
t
he larvae of some s
p
ecies are able to withstand limited desiccation. A few s
p
ecies have
t
errestr
i
a
ll
arvae. L
ib
e
ll
u
lid
ae (900 spec
i
es) pr
i
nc
i
pa
ll
y
b
ree
di
nst
ill
-water
h
a
bi
tats, t
h
oug
h
l
arvae o
f
some spec
i
es are stream
d
we
ll
ers. Larvae o
f
most spec
i
es are secret
i
ve,
hidi
n
g
amon
g
rotten ve
g
etation at the bottom of the pond or lake; a few others have become secon
-
d
aril
y
adapted for a more active existence amon
gg
rowin
g
ve
g
etation. Adults var
yg
reatl
y
in size and coloration, the family including some of the most strikingly marked Anisoptera
wi
t
h
pa
l
ew
i
ngs
b
ear
i
ng spots or
b
an
d
so
f
p
i
gment, common
l
y
d
ar
kb
ut somet
i
mes
b
r
i
g
h
t
s
h
a
d
es o
f
orange or re
ddi
s
hb
rown.
144
CHAPTER
6
F
IGURE 6.12.
A
dragonfly,
M
acromia magni
fi
c
a
(Corduliidae). (A) Adult male; (B) larva, dorsal view; and (C)
l
arva,
l
atera
l
v
i
ew w
i
t
hl
a
bi
um exten
d
e
d
. [Repro
d
uce
dby
perm
i
ss
i
on o
f
t
h
eSm
i
t
h
son
i
an Inst
i
tut
i
on Press
f
ro
m
S
mithsonian Institution United States National Museum Proceedin
gs
,V
olume 49, ‘Notes on the life history and
V
V
e
cology of the dragonflies (Odonata) of Washington and Oregon,’ July 28, 1915, by C. H. Kennedy: Figures 134,
1
4
6
, and 147. Washin
g
ton D.C., U.S. Government Printin
g
Office, 191
6
.]
L
iterature
Th
eO
d
onata
h
ave
b
een one o
f
t
h
e most popu
l
ar
i
nsect groups
f
or stu
d
y, an
d
t
h
e
li
terature on t
h
em
i
sa
b
un
d
ant. Genera
l
accounts o
f
t
h
e
i
r
bi
o
l
ogy are g
i
ven
b
yT
ill
yar
d
(
19l7
)
, Walker
(
19
5
3
)
, Corbe
t
et al.
(
19
6
0
)
, Corbet
(
19
6
2, 1980, 1999
)
, Miller
(
1987
)
,
Watson and O’Farrell
(
1991
)
, Needham
et al.
(
2000), and Silsb
y
(2001). The latter include
s
superb color photographs certain to stimulate interest in the order. The phylogeny an
d
c
lassification of the group, which remain controversial, are discussed by Trueman (1996),
Bec
hl
y et a
l.
(
1998), M
i
so
f
e
ta
l.
(
2001), M
i
so
f
(2002), an
d
Re
h
n (2003). O
d
onata may
b
e
i
dentified throu
g
h the ke
y
s of Walker (19
5
3, 19
5
8), Walker and Corbet (197
5
), and Westfall
(
1984) [North American forms]; Askew (1988) [Euro
p
ean fauna]; Corbet
et al.
(
19
6
0
)
an
d
Miller (1987) [British s
p
ecies]; and Watso
n
et al.
(1991) [Australian fauna].
As
k
ew, R. R., 1988, T
h
e Dragonflies of Europe, Har
l
ey Boo
k
s, Co
l
c
h
ester, U.K
.
B
ec
hly
, G., Ne
l
, A., Mart´ınez-De
l
c
l
`os, X., an
d
F
l
ec
k
, G., 1998, Four new
d
ra
g
on
fli
es
f
rom t
h
e Upper Jurass
i
co
f
G
ermany and the Lower Cretaceous of Mongolia (Anisoptera: Hemeroscopidae, Sonidae, and Proterogom
-
p
hid
ae
f
am. nov.)
,
Od
onato
l
ogic
a
27
:
149
–
18
7.
C
ar
p
enter, F. M., 1992, Su
p
erc
l
ass Hexa
p
o
d
a,
i
n:
Tr
eatise on Invertebrate Paleontology
rr
,P
art R, Vo
l
.3
(
R.L
.
K
aesler, ed.), Geological Society of America and University of Kansas, Boulder, CO and Lawrence, KA
.
C
orbet, P. S., 19
6
2, A
B
io
l
ogy of Dragonflies,
W
itherby, London. (Reprinted in 1983 by Classey, Faringdon, U.K.)
WW
C
or
b
et
,
P. S
.
,
1980, B
i
o
l
o
gy
o
f
O
d
onata, Annu. Re
v
. Entomo
l
.
25
:18
9
–217
.
C
orbet, P. S., 1999, Dragonflies: Behavior and Ecology o
f
Odonat
a
, Cornell University Press, Ithaca, NY.
C
orbet, P. S., Longfield, C., and Moore, N. W., 19
6
0, Dragon
fl
ie
s
,Co
lli
ns, Lon
d
on.
M
ill
er
,
P. L.
,
1987
,
D
ra
g
onflies, Cam
b
r
idg
eUn
i
vers
i
t
y
Press, Cam
b
r
idg
e.
145
PA
LE
O
PTER
A
M
isof, B., 2002, Diversit
y
of Anisoptera (Odonata): Inferin
g
speciation processes from patterns of morpholo
g
ica
l
d
iversity
,
Z
oolo
gy
1
0
5
:
355–365
.
Mi
so
f
, B., R
i
c
k
ert, A. M., Buc
kl
e
y
, T. R., F
l
ec
k
, G., an
d
Sauer, K. P., 2001, P
hyl
o
g
enet
i
cs
ig
na
l
an
di
ts
d
eca
yin
m
itochondrial SSU and LSU rRNA
g
ene fra
g
ments of Anisoptera,
M
ol. Biol. E
v
ol
.
1
8
:27–
3
7.
N
eedham, J. G., Westfall, M. J., Jr., and May, M. L., 2000, Dragonflies of North Americ
a
,
r
e
v. ed., Scientific
P
u
bli
s
h
ers
,
Ga
i
nesv
ill
e
,
FL.
R
ehn, A. C., 2003, Ph
y
lo
g
enetic anal
y
sis of hi
g
her-level relationships of Odonata
,
Sy
st. Entomol
.
2
8
:
181–23
9
.
Sil
s
b
y, J., 2001, Dragonflies of t
h
eWor
ld
,
Sm
i
t
h
son
i
an Inst
i
tut
i
on Press, Was
hi
ngton, DC
.
Tilly
ar
d
, R. J., 1917
,
Th
e Bio
l
ogy of Dragonflies
,
Cam
b
r
idg
eUn
i
vers
i
t
y
Press, Lon
d
on
.
T
rueman, J. W. H., 1996, A preliminary cladistic analysis of odonate wing venation, Odonatolo
g
ic
a
25
:5
9
–72.
W
aage, J. K., 1984, Sperm compet
i
t
i
on an
d
t
h
eevo
l
ut
i
on o
f
o
d
onate mat
i
ng systems,
i
n:
S
perm Competition an
d
t
h
e Evo
l
ution of Anima
l
Mating Systems
(
R. L. Sm
i
t
h
,e
d
.
)
, Aca
d
em
i
c Press, New Yor
k.
W
alker, E. M., 1953, The Odonata o
f
Canada and Alaska
,V
ol. I: General and Zygoptera, University of Toronto
VV
P
ress, Toronto.
W
alker
,
E. M.
,
19
5
8
,
T
h
eO
d
onata of Cana
d
aan
d
A
l
as
ka
,V
ol. 2:
V
V
A
nisoptera—4 Fami
l
ies
,
Un
i
vers
i
t
y
o
f
Toronto
P
ress,
T
oronto.
W
alker, E. M., and Corbet, P. S., 1975,
Th
eO
d
onata of Cana
d
aan
d
A
l
as
k
a
,V
ol. 3:
V
V
Anisoptera—3 Fami
l
ies
,
U
n
i
vers
i
t
y
o
f
Toronto Press, Toronto
.
W
atson, J. A. L., and O’Farrell, A. F., 1991, Odonata, in:
T
he Insects o
f
Australi
a
,
2nd ed., Vol. I (CSIRO, ed.),
M
e
lb
ourne Un
i
vers
i
ty Press, Car
l
ton, V
i
ctor
i
a.
W
atson, J. A. L., T
h
e
i
sc
hi
n
g
er, G., an
d
A
bb
e
y
, H. M., 1991, T
h
e Austra
l
ian Dragonflies
,
CSIRO
,
Me
lb
ourne.
W
estfall, M. J., Jr., 1984, Odonata, in:
A
n Introduction to the A
q
uatic Insects of North Americ
a
,
2nd ed. (R. W
.
M
err
i
tt an
d
K. W. Cumm
i
ns, e
d
s.), Ken
d
a
ll
/Hunt, Du
b
uque, IA.