Tải bản đầy đủ (.doc) (4 trang)

GIẢI ĐỀ THI HSG LỚP 12 NĂM 2010 - NAM ĐỊNH

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (132.36 KB, 4 trang )

GIẢI Đ THI HC SINH GII TỈNH NAM ĐỊNH NĂM 2010
A. Trc nghim:
B. T" lu%n:
Câu I:

             
  
x x x x x
π π π
− + + = ⇔ − + + =

      x x x⇔ − + + =

     x x x⇔ + + =

     x x x⇔ + + =

 
    
x
x x
=



+ + =


 
  
 


x k
x x
π
=




+ = −


    
 
x k
x x
π
π π
=




+ = −


   
  
x k x k
x x m
π π

π π π
π
= =
 
 
⇔ ⇔
 
+ = − + = − +
 
 


 

x k k Z
x m m Z
π
π
π
= ∈




= − + ∈


 !"#$%& '( )# *+
x k k Z
π

= ∈


 

x m m Z
π
π
= − + ∈

 
 
    , 
, 
 
    
x y x y
x x y y x y
x y
x y

 − = +
− = +
 

 
− =
− =





-./$


u x
v y

= ≥


= ≥


$0$ 1'!2 *
       
     
,           
     
u v u v u v u v u v u v u v
u v u v u v
  
− = + − = + − = − +
  
⇔ ⇔
  
− = − = − =
  
  
  

 
 
 
u u v uv
u v

+ − =



− =


341
v =
 *$%5$ 6 




u
u

=


=


78# *+- 

v ≠
 *
 
 
 
  
  
u u u
vv v
u v

+ − =




− =

9./$



u
u
t do
v
v


= ≥


>

$0'!2$
  
        t t t t t t t t t+ − = ⇔ + − = ⇔ = = = − <
:;
9<
t =
$ &
u =
$$%5$ 6 

 v
− =
78# *+<
t =
$ &
u v=
$$%5$ 6 

 v
=

   v v do v u⇔ = ⇒ = > ⇒ =
-

 =
 


x
u x
v y
y

=
= =
 

⇔ ⇔
  
= =
=
 


 *# *+>1 ?$
=

x
y
=


=

 C'ch kh'c:
+)Co
,   ,       
     

x x y y x y x x y y y y y y
x y x y x y
  
− = + − = + + − = +
  
⇔ ⇔
  
− = = + = +
  
  
    
 
y y y y
x y

+ − = +



= +


  
 
 
      @   A 
   
y y
y y y y y y y y
x y x y

 
≥ ≥
 
 
 
⇔ + − = + ⇔ + − − + =
 
 
= + = +
 
 
 






=
 ,  


 

 
y
y
y
x
y y

y
y
x y
x y







=



=

 

⇔ − + = ⇔ ⇔
  

=
=

 

= +

 


= +




-
 *# *+>1 ?$
=

x
y
=


=

.
x >
-B0
 :# :# :#
  
    
:# :# :# :# :#
      
x x x
x x x x x
x x x x x+ ≤ ⇔ + ≤ ⇔ + ≤ ⇔ ≤
:#


 
:#   :#  
x
x⇔ ≤ =

 

:#   :#  

x x x⇔ ≤ ⇔ − ≤ ≤ ⇔ ≤ ≤
C$'( # *+



x≤ ≤
 C'ch kh'c:
+) .
x >
-./$

:# 
u
u x x= ⇔ =
-B 1'!2C$
  

    -    
u u u u u
u+ ≤ ⇔ ≤ ⇔ ≤ ⇔ ≤



   :#  

u x x⇔ − ≤ ≤ ⇔ − ≤ ≤ ⇔ − ≤ ≤
-C$'( # *+



x≤ ≤
Câu II:
9B0
  
D    y x m m x x= − − −
E)'F 76:G$H$%GI76
 
DD     y x m m x= − − −
E)'F 76:G$H$%GI
0J6+K';$L$M1$;
x =
N 76 ON 


D       

DD 
     
y m m
m
y
m m


= − − − =


⇔ ⇔ =
 
>
− − − >




m =
$ & 6+K';$L$M1$;
x =
-
 C'ch kh'c:
9J6+K';$L$M1$;
x =
$ &

D        y m m m= ⇒ − − − = ⇒ =
9 
m =
 6+K$%5$ 6 

 

  


x
y x x C= + − +
-B0
 
D  y x x x= + −
E)'F 76:G$H$%GI
 D    y x x x+ = ⇔ = − = =
-
B BPB$0$ ?
m =
$Q+C$-
m =
$ & 6+K';$L$M1$;
x =
-
C 
m =
 6+K$%5$ 6 


  

x
y x C= − +
9.!R#$ S#>'T107< *K#N !"#$%& 
  y k x= − +
9.!R#$ S#>$4EU7<N 76 ON  *01# *+V




    


x
x k x
x x k

− + = − +



− =

9V
 
  
 

        
 
 
x x
x x x x x
x x k x x k
 

− + = − + + =
 
⇔ ⇔
 

 
− = − =
 

 



x x
x x k

±
= =




− =

9<EW$ &NW>$W
9<EW
 


$ &NW
, 
=
>$
, 


=
y x= +
<EW
 

$ &NW
, 
=

>$
, 

=
y x

= +
-
C0'!R#$ S#'T1076$4EU7<:6W
, 

=
y x= +

, 

=
y x

= +
-

 C'ch kh'c: XY
 
    T x y C




 
 

x
y x⇔ = − +
-B0
 
  
D  D  y x x y x x x= − ⇒ = −
9BQ$Z0
 C
$;
 
  T x y
$
  
D  y y x x x y= − +
 ∆
-.Q$
 ∆
T10N 76 ON 
  
 D  y x x y= − +





 

x
x
=


⇔ ⇔
±

=


9<E

W$ &
 ∆
$W W
9<EW
 


$ &
 ∆
$
, 


=
y x= = +

9<EW
 

$ &
 ∆
$
, 

=
y x

= = +
-
C0'!R#$ S#'T1076$4EU7<:6W
, 

=
y x= +

, 

=
y x

= +
-

9./$
  

          t x t t t x t dt dx t dt dx= + = = ⇒ = + ⇒ = ⇒ =
76



 
 
t x
t x

= +


= +


3G
     

 
 
     
   
    @ A
 
t dt d t
I t t dt t dt tdt dt

t tt t
+
= = − + − = − + −
+ ++
∫ ∫ ∫ ∫ ∫ ∫

 

@ : A
 
t t
t t= − + − +
,     
@  :     :  A :
     
= − + − + − − + − + = +
-
 
:
 
I = +
Câu III:
9
    
        x y x y x y+ − + − = ⇔ − + + =
G$[+V76C)N\ IW-
976:6$4'M+Z0$4$14]]Z0N^$P]-3G
MA IA⊥
76
MB IB⊥

-76_+$%G
'!R#$%`a'!R#N\ V]76
b  c    DA B C C= I
-
9.!R#$%`a'!R#N\ V]G$[+

 

J

76C)N\ 

D

R IM=
-
 

    

R⇒ = − − + − =
-3Ga
$
   
 
     
 
x y x y x+ + − = ⇔ + + − =
- '$Y0'd'M+76$ e0+( *
   

   
      
   
  
x y x y x y x y
x y x
x y x x y x
 
+ − + − = + = − +
 
⇔ ⇒ − + = − +
 
+ + − = + = − +
 
 
  x y
⇒ − − =
7'!R#$ f#$Q$%$g#T1)$:6
  x y− − =
-
9 !"#$%& $ h'; i:6

  
x y z
+ + =
-]$ 1dG
 
  
M M M
x y z

+ + =
9BP
-  OM ON = ≠
1%0


O M OM
O N
ON

≠ ≠



 





uuuur ur
uuuur ur
-]63$ 1d$0j]G
-   
- - -   -  
OM t ON t
OM ON OM ON OM ON OM ON

= >



= = =


uuuur uuuur
uuuur uuuur uuuur uuuur
9BP$0
-
-
-
M N
M N
M N
x t x
y t y
z t z
=


=


=

-3G
  
- - -     
M N M N M N N N N
x x y y z z t x y z⇔ + + = ⇔ + + =
9BP761%0

     
     
     
N N N
M M M
N N N N N N
x y z
x y z
t x y z t x y z t+ + = + + ⇔ + + = + +
  
 
  
N N N
N N N
x y z
x y z do t⇔ + + = + + >
     
   =
     
      
N N N
N N N N N N
x y z
x y z x y z⇔ + + = + + ⇔ − + − + − =
9$Y0'd'M+3$ e0+($
  
   =
     
   
x y z− + − + − =

:6$Z0+d$+/$k1K'F $[+
  
   
  
K
76C)N\
l

R =
- m#$e'M+3_+$%G+d$+/$k1K'F -
Câu IV:
9BP
 SA ABCD AB⊥ ⇒
:6 &  41718##Z0n$%G76
SA AB⊥
G
SAB∆
718#$;-##o0n76
:6#

SBA∠ =
GnW-$0

$0  - SBA a∠ = =
-


a
SM⇒ =




SM SA⇒ =
76]5#o0n76
9B0
   
 

QQ QQ
 

QQ
SAD BCM MN
AD SAD
MN BC CD SN SD
BC BCM
AD BC
=




⇒ ⇒ =





I


9B0 m#+ Cg'p  &  n-)'M+JV$!"#m#$ 1d); nnn$ &
-
-
- -
S HIK
S ABC
V
SH SI SK
V SA SB SC
=
-
B 7XYqr$ 0$ m$L:6 &  41718##Z076J$%Gn$ &nqr$ S# 6#76qQQJr
HF SH
AE SA
⇒ =
- 
'
-
-

- - -
-

- -

-
- - -

S HIK SIK
S ABC SBC

HF SI SK ISK
V HF S
SH SI SK
V AE S SA SB SC
AE SB SC BSC



= = =

'+
s>H#Cg'p$%G$0
-
-

- -

S MBC
S ABC
V
SM SB SC
V SA SB SC
= =
76
-
-
  
- - -
  =
S MNC

S ADC
V
SM SN SC
V SA SD SC
= = =
- -
- - - - -
- -

 


 =
=
S MBC S ABC
S MBCN S MBC S MNC S ABC S ADC
S MNC S ADC
V V
V V V V V
V V

=


⇒ ⇒ = + = +


=



9:6 &  o $G

- - -
    
- - - - -
    
ABC ADC S ABC S ADC S ABCD ABCD
a
S S V V V SA S a a a
∆ ∆
= ⇒ = = = = =

- - - - -
    
- -  
=  = l
S MBCN S MBC S MNC S ABCD S ABCD
a
V V V V V= + = = =
n1%0$ M$\ N K'0>*3]:6

- - -
l  
-
= l
S ABCD S MBCN S ABCD
a
V V V V= − = =
-
 C'ch kh'c: 9BP

 SA ABCD AB⊥ ⇒
:6 &  41718##Z0n$%G76
SA AB⊥
G
SAB∆
718#$;-
##o0n76:6#

SBA∠ =
GnW-$0

$0  - SBA a∠ = =
-]$ 1d; n76


a
SM =


SM SA⇒ =
76]5#o0n76
9B0
   
 

QQ QQ
 

QQ
SAD BCM MN

AD SAD
MN BC CD SN SD
BC BCM
AD BC
=




⇒ ⇒ =





I
7635#o0n76-
9 nnn'8+d$718##76N 8#'t# S#  Y $'Eu  '
 
            -

a
A B a D a S a C a a M
BP


SN SD=
7635#o0n76



SN SD⇒ =
uuur uuur
  
  
 
a a
N⇒
9

-
   
- - - -
  
S ABCD ABCD
a
V SA S a a a= = =
9
  
- - -
  -  -  - - 
 -  -
  = l l
S MBCN S MBC S MNC
a a a
V V V SB SC SM SN SC SM
   
= + = + = = + =
   
uuur uuur uuur uuur uuur uuur
9'

  
- -
-  - -  - - 
 l l
S ABCD S MBCN
a a a
V V V= − = − =
Câu V:
9./$



  
x
t x R
x
π
= ∈
+
-
9B0
 
 
 
    -  -
     
x x
x R x x x
x x
π π

∀ ∈ + ≥ = ⇔ ≤ ⇔ ≤
+ +
>?1vWwEf%0N 76 ON 


 

x x
±
= ⇔ =
-


 
x R t
π π
∀ ∈ − ≤ ≤
9 ' 6+K$%5$ 6 
        
 
f t t t t t
π π
= − + + − ≤ ≤
-
9B0$W
  
    -   -  -     t t t t t t t t t t t t+ = + = + − = −

 
           

 
f t t t t t t t t t
π π
= − + + = − − + − + − ≤ ≤
 
     
 
f t t t t t
π π
⇔ = − − + − ≤ ≤
9./$
 
 
   
u t t u
π π
= − ≤ ≤ ⇒ − ≤ ≤
$0$ 1'!2 6+K
 
 
    
 
f u u u u u= − − + − ≤ ≤
9
 f u
:G$H$%G
 

 
 


 
 
76

 
D     
 
f u u u u= − − − ≤ ≤
9B%G
 
  D  
 
u f u
 
∈ − =
 
 
# *+
 

 
u u=− =
9B0
   =  
       
     
f f f− = − = =
XB3Z0 6+K'( :6
 


 
   =
    b      c
   
x R
u
Max y Maxf u Max f f f

 
∈ −
 
 
= = − − =
6XB33Z0 6+K'( :6
 

 
   
+  +   +b      c
   
x R
u
y f u f f f

 
∈ −
 
 
= = − − =



×