THI TH I HC - NM HC 2010
Môn: Toán ( Thời gian: 180 phút )
I.Phần chung cho tất cả thí sinh (7 điểm)
Câu I (2 điểm). Cho hàm số
2
12
+
+
=
x
x
y
có đồ thị là (C)
1.Khảo sát sự biến thiên và vẽ đồ thị của hàm số
2.Chứng minh đờng thẳng d: y = x + m luôn luôn cắt đồ thị (C) tại hai điểm phân biệt A, B. Tìm m
để đoạn AB có độ dài nhỏ nhất.
Câu II (2 điểm)
1.Giải phơng trình 9sinx + 6cosx 3sin2x + cos2x = 8
2.Giải bất phơng trình
)3(log53loglog
2
4
2
2
2
2
>
xxx
Câu III (1 điểm). Tìm nguyên hàm
=
xx
dx
I
53
cos.sin
Câu IV (1 điểm). Cho lăng trụ tam giác ABC.A
1
B
1
C
1
có tất cả các cạnh bằng a, góc tạo bởi cạnh bên và mặt
phẳng đáy bằng 30
0
. Hình chiếu H của điểm A trên mặt phẳng (A
1
B
1
C
1
) thuộc đờng thẳng B
1
C
1
. Tính
khoảng cách giữa hai đờng thẳng AA
1
và B
1
C
1
theo a.
Câu V (1 điểm). Xét ba số thực không âm a, b, c thỏa mãn a
2009
+ b
2009
+ c
2009
= 3. Tìm giá trị lớn nhất của
biểu thức P = a
4
+ b
4
+ c
4
II.Phần riêng (3 điểm)
1.Theo chơng trình chuẩn
Câu Via:
1.Trong mặt phẳng với hệ tọa độ Oxy cho đờng tròn (C) có phơng trình (x-1)
2
+ (y+2)
2
= 9 và đờng
thẳng d: x + y + m = 0. Tìm m để trên đờng thẳng d có duy nhất một điểm A mà từ đó kẻ đợc hai tiếp tuyến
AB, AC tới đờng tròn (C) (B, C là hai tiếp điểm) sao cho tam giác ABC vuông.
2.Cho điểm A(10; 2; -1) và đờng thẳng d có phơng trình
+=
=
+=
tz
ty
tx
31
21
. Lập phơng trình mặt phẳng
(P) đi qua A, song song với d và khoảng cách từ d tới (P) là lớn nhất.
Câu VIIa: 1). Có bao nhiêu số tự nhiên có 4 chữ số khác nhau và khác 0 mà trong mỗi số luôn luôn có mặt
hai chữ số chẵn và hai chữ số lẻ.
2) Giải phơng trình:
)(,1
4
Cz
iz
iz
=
+
2.Theo chơng trình nâng cao (3 điểm)
Câu VIb (2 điểm)
1.Trong mặt phẳng với hệ tọa độ Oxy cho đờng tròn (C): x
2
+ y
2
- 2x + 4y - 4 = 0 và đờng thẳng d có
phơng trình x + y + m = 0. Tìm m để trên đờng thẳng d có duy nhất một điểm A mà từ đó kẻ đợc hai tiếp
tuyến AB, AC tới đờng tròn (C) (B, C là hai tiếp điểm) sao cho tam giác ABC vuông.
2.Cho điểm A(10; 2; -1) và đờng thẳng d có phơng trình
3
1
12
1
==
zyx
. Lập phơng trình mặt
phẳng (P) đi qua A, song song với d và khoảng cách từ d tới (P) là lớn nhất.
Câu VIIb (1 điểm) Có bao nhiêu số tự nhiên có 5 chữ số khác nhau mà trong mỗi số luôn luôn có mặt hai
chữ số chẵn và ba chữ số lẻ.
I.Phần dành cho tất cả các thí sính
Câu Đáp án Điểm
I
(2
điểm)
1. (1,25 điểm)
0,5
1
+
Dx
x
y >
+
= 0
)2(
3
'
2
Suy ra hàm số đồng biến trên mỗi khoảng
)2;(
và
);2( +
0,25
+Bảng biến thiên
x
-2
+
y + +
+
2
y
2
0,25
c.Đồ thị:
Đồ thị cắt các trục Oy tại điểm (0;
2
1
) và cắt trục Ox tại điểm(
2
1
;0)
Đồ thị nhận điểm (-2;2) làm tâm đối xứng
0,25
2. (0,75 điểm)
Hoành độ giao điểm của đồ thị (C ) và đờng thẳng d là nghiệm của phơng trình
=++
+=
+
+
)1(021)4(
2
2
12
2
mxmx
x
mx
x
x
Do (1) có
mmmvam =++>+= 0321)2).(4()2(01
22
nên đờng
thẳng d luôn luôn cắt đồ thị (C ) tại hai điểm phân biệt A, B
0,25
Ta có y
A
= m x
A
; y
B
= m x
B
nên AB
2
= (x
A
x
B
)
2
+ (y
A
y
B
)
2
= 2(m
2
+ 12)
suy ra AB ngắn nhất AB
2
nhỏ nhất m = 0. Khi đó
24=AB
0,5
II
(2
điểm)
1. (1 điểm)
Phơng trình đã cho tơng đơng với
9sinx + 6cosx 6sinx.cosx + 1 2sin
2
x = 8
6cosx(1 sinx) (2sin
2
x 9sinx + 7) = 0
6cosx(1 sinx) (sinx 1)(2sinx 7) = 0
0,5
(1-sinx)(6cosx + 2sinx 7) = 0
=+
=
)(07sin2cos6
0sin1
VNxx
x
0,25
2
2
kx +=
0,25
2. (1 điểm)
ĐK:
>
03loglog
0
2
2
2
2
xx
x
Bất phơng trình đã cho tơng đơng với
)1()3(log53loglog
2
2
2
2
2
> xxx
đặt t = log
2
x,
BPT (1)
)3(5)1)(3()3(532
2
>+> tttttt
0,5
2
x
y
O
2
-2
<<
<<
>+
>
4log3
1log
43
1
)3(5)3)(1(
3
1
2
2
2
x
x
t
t
ttt
t
t
0,25
<<
<
168
2
1
0
x
x
Vậy BPT đã cho có tập nghiệm là:
)16;8(]
2
1
;0(
III
1 điểm
==
xx
dx
xxx
dx
I
23233
cos.2sin
8
cos.cos.sin
đặt tanx = t
dt
t
t
t
t
dt
I
t
t
x
x
dx
dt
+
=
+
=
+
==
3
32
3
2
22
)1(
)
1
2
(
8
1
2
2sin;
cos
0,5
C
x
xxxdtt
t
tt
dt
t
ttt
+++=+++=
+++
=
2
2433
3
246
tan2
1
tanln3tan
2
3
tan
4
1
)
3
3(
133
0,5
Câu IV
1 điểm
Do
)(
111
CBAAH
nên góc
HAA
1
là góc giữa AA
1
và (A
1
B
1
C
1
), theo giả thiết
thì góc
HAA
1
bằng 30
0
. Xét tam giác vuông AHA
1
có AA
1
= a, góc
HAA
1
=30
0
2
3
1
a
HA =
. Do tam giác A
1
B
1
C
1
là tam giác đều cạnh a, H thuộc B
1
C
1
và
2
3
1
a
HA =
nên A
1
H vuông góc với B
1
C
1
. Mặt khác
11
CBAH
nên
)(
111
HAACB
0,5
Kẻ đờng cao HK của tam giác AA
1
H thì HK chính là khoảng cách giữa AA
1
và
B
1
C
1
0,25
Ta có AA
1
.HK = A
1
H.AH
4
3
.
1
1
a
AA
AHHA
HK ==
0,25
3
A
1
A B
C
C
1
B
1
K
H
Câu V
1 điểm
áp dụng bất đẳng thức Cô si cho 2005 số 1 và 4 số a
2009
ta có
)1(.2009 20091 11
4
2009
20092009200920092009200920092009
2005
aaaaaaaaa =+++++++
Tơng tự ta có
)2(.2009 20091 11
4
2009
20092009200920092009200920092009
2005
bbbbbbbbb =+++++++
)3(.2009 20091 11
4
2009
20092009200920092009200920092009
2005
ccccccccc =+++++++
0,5
Cộng theo vế (1), (2), (3) ta đợc
)(20096027
)(2009)(46015
444
444200920092009
cba
cbacba
++
+++++
Từ đó suy ra
3
444
++= cbaP
Mặt khác tại a = b = c = 1 thì P = 3 nên giá trị lớn nhất của P = 3.
0,5
Câu
VIa
2
điểm
1.Từ phơng trình chính tắc của đờng tròn ta có tâm I(1;-2), R = 3, từ A kẻ đợc 2
tiếp tuyến AB, AC tới đờng tròn và
ACAB
=> tứ giác ABIC là hình vuông
cạnh bằng 3
23= IA
0,5
=
=
==
7
5
6123
2
1
m
m
m
m
0,5
2. (1 điểm)
Gọi H là hình chiếu của A trên d, mặt phẳng (P) đi qua A và (P)//d, khi đó
khoảng cách giữa d và (P) là khoảng cách từ H đến (P).
G.sử điểm I là hình chiếu của H lên (P), ta có
HIAH
=> HI lớn nhất khi
IA
Vậy (P) cần tìm là mặt phẳng đi qua A và nhận
AH
làm véc tơ pháp tuyến.
0,5
)31;;21( tttHdH ++
vì H là hình chiếu của A trên d nên
)3;1;2((0. == uuAHdAH
là véc tơ chỉ phơng của d)
)5;1;7()4;1;3( AHH
Vậy (P): 7(x 10) + (y 2) 5(z + 1) = 0
7x + y -5z -77 = 0
0,5
Câu
VIIa
1
điểm
Từ giả thiết bài toán ta thấy có
6
2
4
=C
cách chọn 2 chữ số chẵn (vì không có số
0)và
10
2
5
=C
cách chọn 2 chữ số lẽ => có
2
5
C
.
2
5
C
= 60 bộ 4 số thỏa mãn bài toán
0,5
Mỗi bộ 4 số nh thế có 4! số đợc thành lập. Vậy có tất cả
2
4
C
.
2
5
C
.4! = 1440 số
0,5
2.Ban nâng cao.
Câu
VIa
2
điểm
1.( 1 điểm)
Từ phơng trình chính tắc của đờng tròn ta có tâm I(1;-2), R = 3, từ A kẻ đợc 2 tiếp
tuyến AB, AC tới đờng tròn và
ACAB
=> tứ giác ABIC là hình vuông cạnh bằng
3
23= IA
0,5
=
=
==
7
5
6123
2
1
m
m
m
m
0,5
4
2.Gọi H là hình chiếu của A trên d, mặt phẳng (P) đi qua A và (P)//d, khi đó
khoảng cách giữa d và (P) là khoảng cách từ H đến (P).
Giả sử điểm I là hình chiếu của H lên (P), ta có
HIAH
=> HI lớn nhất khi
IA
Vậy (P) cần tìm là mặt phẳng đi qua A và nhận
AH
làm véc tơ pháp tuyến.
0,5
)31;;21( tttHdH ++
vì H là hình chiếu của A trên d nên
)3;1;2((0. == uuAHdAH
là véc tơ chỉ phơng của d)
)5;1;7()4;1;3( AHH
Vậy (P): 7(x 10) + (y 2) 5(z + 1) = 0
7x + y -5z -77 = 0
0,5
Câu
VIIa
1
điểm
Từ giả thiết bài toán ta thấy có
10
2
5
=C
cách chọn 2 chữ số chẵn (kể cả số có chữ số
0 đứng đầu) và
3
5
C
=10 cách chọn 2 chữ số lẽ => có
2
5
C
.
3
5
C
= 100 bộ 5 số đợc chọn.
0,5
Mỗi bộ 5 số nh thế có 5! số đợc thành lập => có tất cả
2
5
C
.
3
5
C
.5! = 12000 số.
Mặt khác số các số đợc lập nh trên mà có chữ số 0 đứng đầu là
960!4
3
5
1
4
=CC
. Vậy
có tất cả 12000 960 = 11040 số thỏa mãn bài toán
0,5
5