Tải bản đầy đủ (.doc) (5 trang)

De-D.an thi thu DH khoi A 2010

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (192.32 KB, 5 trang )

Trờng THPT lam kinh kiểm tra chất lợng ôn thi Đh - cđ (Lần 2)
Môn: Toán (khối a), năm học 2009 - 2010
Thời gian: 180 phút (không kể thời gian giao đề)
PHN CHUNG CHO TT C TH SINH (7.0 im)
Câu I (2.0 điểm) Cho hm s
23
23
+= xxy
1. Kho sỏt v v th (C) ca hm s.
2. Bin lun s nghim ca phng trỡnh
1
22
2

=
x
m
xx
theo tham s m.
Câu II (2.0 điểm )
1. Gii phng trỡnh:
( )
2
3 4 2 2 2 1 2sin x cos x sin x = +
2. Gii phng trỡnh:
2 3
16 4
2
14 40 0
x x x
log x log x log x . + =


Câu III (1.0 điểm) Tớnh tớch phõn
3
2
3
x sin x
I dx.
cos x



=

Câu IV(1.0điểm) Trong khụng gian
Oxyz
cho ng thng d:
3
2
12
1

+
==
zyx
v mt phng
012:)( =++ zyxP
.Tỡm ta giao im
A
ca ng thng d vi mt phng
)(P
. Vit phng

trỡnh ca ng thng

i qua im
A
vuụng gúc vi d v nm trong
)(P
.
Câu V:(1.0điểm) Trong khụng gian vi h to
Oxyz
, cho hai im
)2;1;1(A
,
)2;0;2(B
. Tỡm qu tớch cỏc
im cỏch u hai mt phng
)(OAB
v
)(Oxy
.
PHN RIấNG ( 3.0 im): Thớ sinh ch c lm mt trong hai phn (phn A hoc B)
A.Theo chng trỡnh Chun
Câu VI.a(2.0 điểm)
1. Cho hm s
3
2
sin)(
2
+=
x
xexf

x
. Tỡm giỏ tr nh nht ca
)(xf
v chng minh rng
0)( =xf

cú ỳng hai nghim.
2. Gii h phng trỡnh sau trong tp hp s phc:



+=+
=
izz
izz
.25
.55.
2
2
2
1
21

Câu VII.a(1.0 điểm) Trong mt phng
Oxy
cho
ABC

( )
0 5A ; .

Cỏc ng phõn giỏc v trung tuyn
xut phỏt t nh
B
cú phng trỡnh ln lt l
1 2
1 0 2 0d : x y ,d : x y . + = =
Vit phng trỡnh ba cnh
ca tam giỏc ABC.
B.Theo chng trỡnh Nõng cao
Câu VI.b (2.0 điểm)
1. Gii phng trỡnh
12
9.
4
1
4.69.
3
1
4.3
++
=+
xxxx
.
2. Tớnh din tớch hỡnh phng gii hn bi cỏc ng sau: y = x.sin2x, y = 2x, x =
2

Câu VII.b (1.0 điểm) Cho hỡnh chúp t giỏc u
SABCD
cú cnh bờn bng a v mt chộo
SAC

l tam giỏc
u. Qua
A
dng mt phng
)(P
vuụng gúc vi
SC
.Tớnh din tớch thit din to bi mt phng
)(P

v hỡnh chúp.
Hết đề
Họ và tên thí sinh:. . . . . . . . . . . . . . . . . . . . . . . . . ; Số báo danh:. . . . . . . . . . . . . . .
ĐÁP ÁN
Câu I 2 điểm
a)
Khảo sát sự biến thiên và vẽ đồ thị của hàm số
3 2
3 2y x x .= − +
• Tập xác định: Hàm số có tập xác định
D R.=
• Sự biến thiên:
2
3 6y' x x.= −
Ta có
0
0
2
x
y'

x
=

= ⇔

=

0,25

( ) ( )
0 2 2 2
CD CT
y y ; y y .= = = = −
0,25
• Bảng biến thiên:
x
−∞
0 2
+∞
y'


+
0

0
+

y


2
+∞
−∞

2−
0,25
• Đồ thị: Học sinh tự vẽ hình
0,25
b)
Biện luận số nghiệm của phương trình
1
22
2

=−−
x
m
xx
theo tham số m.
• Ta có
( )
2 2
2 2 2 2 1 1
1
m
x x x x x m,x .
x
− − = ⇔ − − − = ≠

Do đó số nghiệm

của phương trình bằng số giao điểm của
( )
( )
2
2 2 1y x x x , C'= − − −
và đường
thẳng
1y m,x .= ≠
0,25
• Vì
( )
( )
( )
2
1
2 2 1
1
f x khi x
y x x x
f x khi x
>

= − − − =

− <


nên
( )
C'

bao gồm:
+ Giữ nguyên đồ thị (C) bên phải đường thẳng
1x .
=
+ Lấy đối xứng đồ thị (C) bên trái đường thẳng
1x
=
qua Ox.
0,25
• Học sinh tự vẽ hình
0,25
• Dựa vào đồ thị ta có:
+
2m :< −
Phương trình vô nghiệm;
+
2m := −
Phương trình có 2 nghiệm kép;
+
2 0m :− < <
Phương trình có 4 nghiệm phân biệt;
+
0m :≥
Phương trình có 2 nghiệm phân biệt.
0,25
0,25
Câu II 2 điểm
a)
Giải phương trình
( )

2
3 4 2 2 2 1 2sin x cos x sin x− = +
• Biến đổi phương trình về dạng
( ) ( )
2 3 2 1 2 1 0sin x sin x sin x+ − + =
0,75
• Do đó nghiệm của phương trình là
7 2 5 2
2 2
6 6 18 3 18 3
k k
x k ; x k ; x ; x
π π π π π π
π π
= − + = + = + = +
0,25
b)
Giải phương trình
2 3
16 4
2
14 40 0
x x x
log x log x log x .− + =
• Điều kiện:
1 1
0 2
4 16
x ; x ; x ;x .> ≠ ≠ ≠


• Dễ thấy x = 1 là một nghiệm của pt đã cho
0,25
• Với
1x ≠
. Đặt
2
x
t log=
và biến đổi phương trình về dạng
2 42 20
0
1 4 1 2 1t t t
− + =
− + +
0,5
• Giải ra ta được
1 1
2 4
2
2
t ;t x ; x .= = − ⇒ = =
Vậy pt có 3 nghiệm x =1;
1
4
2
x ; x .= =
0,25
Câu III 1.0 điểm
a)
Tính tích phân

3
2
3
x sin x
I dx.
cos x
π
π

=

• Sử dụng công thức tích phân từng phần ta có
3 3
3
3
3 3
1 4
3
x dx
I xd J ,
cosx cosx cosx
π π
π
π
π π
π

− −
 
= = − = −

 ÷
 
∫ ∫
với
3
3
dx
J
cosx
π
π

=

0,25
• Để tính J ta đặt
t sin x.=
Khi đó
3
3
3
2
2
2
3
3
2
3
2
1 1 2 3

1 2 1
2 3
dx dt t
J ln ln .
cosx t t
π
π



− −
= = = − = −
− +
+
∫ ∫
0,5
• Vậy
4 2 3
3
2 3
I ln .
π

= −
+
0,25
Câu IV 1.0 điểm
Tìm tọa độ giao điểm
A
của đường thẳng d với mặt phẳng

)(P
. Viết phương
trình của đường thẳng

đi qua điểm
A
vuông góc với d và nằm trong
)(P
.
• Tìm giao điểm của d và (P) ta được
1 7
2
2 2
A ; ;
 

 ÷
 
0,25
• Ta có
( ) ( ) ( )
2 1 3 2 1 1 1 2 0
d P d p
u ; ; ,n ; ; u u ;n ; ;

 
= − = ⇒ = = −
 
uur uur uur uur uur
0,5

• Vậy phương trình đường thẳng


1 7
2 2
2 2
: x t; y t; z .∆ = + = − = −
0,25
Câu V 1.0 điểm
Trong không gian với hệ toạ độ
Oxyz
, cho hai điểm
)2;1;1(A
,
)2;0;2(B
. Tìm
quỹ tích các điểm cách đều hai mặt phẳng
)(OAB

)(Oxy
.
( ) ( )
, ; ; ; ;2 2 2 2 1 1 1OA OB
 
= − = −
 
uuur uuur
( )
: 0OAB x y z⇒ + − =
.

( )
: 0Oxy z =
.
( )
; ;N x y z
cách đều
( )
OAB
v à
( )
Oxy

( )
( )
( )
( )
, ,d N OAB d N Oxy⇔ =
1
3
x y z z+ −
⇔ =

( )
( )
.
3 1 0
3
3 1 0
x y z
x y z z

x y z

+ − + =

⇔ + − = ± ⇔

+ + − =


Vậy tập hợp các điểm N là hai mặt phẳng có phương trình
0.25
0.5
( )
3 1 0x y z+ − + =
v à
( )
3 1 0x y z+ + − =
.
0.25
Câu VIa 2.0 điểm
1.
Cho hàm số
3
2
sin)(
2
−+−=
x
xexf
x

. Tìm giá trị nhỏ nhất của
)(xf
và chứng
minh rằng
0)( =xf
có đúng hai nghiệm.
• Ta có
x
f ( x ) e x cos x.

= + −
Do đó
( )
0
x
f ' x e x cos x.= ⇔ = − +
0,25
• Hàm số
x
y e=
là hàm đồng biến; hàm số
y x cosx= − +
là hàm nghịch biến

1 0y' sin x , x= − + ≤ ∀
. Mặt khác
0=x
là nghiệm của phương trình
x
e x cos x= − +

nên nó là nghiệm duy nhất.
0,25
• Lập bảng biến thiên của hàm số
( )
y f x=
(học sinh tự làm) ta đi đến kết
luận phương trình
0)( =xf
có đúng hai nghiệm.
• Từ bảng biến thiên ta có
( )
2 0min f x x .= − ⇔ =
0,5
Cho hàm số
3
2
sin)(
2
−+−=
x
xexf
x
. Tìm giá trị nhỏ nhất của
)(xf
và chứng
minh rằng
0)( =xf
có đúng hai nghiệm.
• Ta có
x

f ( x ) e x cos x.

= + −
Do đó
( )
0
x
f ' x e x cos x.= ⇔ = − +
0,25
2.
. Giải hệ phương trình sau trong tập hợp số phức:



+−=+
−−=
izz
izz
.25
.55.
2
2
2
1
21
Đáp số: (2 – i; -1 – 3.i), (-1 – 3i; 2 – i), (-2 + i; 1 + 3i), (1 + 3i; -2 + i)
Câu
VII.a
1.0 điểm
Trong mặt phẳng

Oxy
cho
ABC∆

( )
0 5A ; .
Các đường phân giác và trung
tuyến xuất phát từ đỉnh
B
có phương trình lần lượt là
1 2
1 0 2 0d : x y ,d : x y .− + = − =
Viết phương trình ba cạnh của tam giác ABC.
• Ta có
( )
1 2
2 1 3 5 0B d d B ; AB : x y .= ∩ ⇒ − − ⇒ − + =
0,25
• Gọi
A'
đối xứng với A qua
( ) ( )
1
2 3 4 1d H ; , A' ; .⇒

0,25
• Ta có
3 1 0A' BC BC : x y .∈ ⇒ − − =
0,25
• Tìm được

( )
28 9 7 35 0C ; AC : x y .⇒ − + =
0,25
Câu VI.b 2.0 điểm
1.
Giải phương trình
12
9.
4
1
4.69.
3
1
4.3
++
−=+
xxxx
• Biến đổi phương trình đã cho về dạng
2 2 2 2
9
3 2 27 3 6 2 3
4
x x x x
. . . .+ = −
0,5
• Từ đó ta thu được
3
2
3 2 2
2

39 39
x
x log
 
= ⇔ =
 ÷
 
0,5
2.
Tính diện tích hình phẳng giới hạn bởi các đường sau: y = x.sin2x, y = 2x,
x =
2
π
Ta có: x.sin2x = 2x

x.sin2x – 2x = 0

x(sin2x – 2) =0

x = 0
DiÖn tÝch h×nh ph¼ng lµ:
∫∫
−=−=
2
0
2
0
)22(sin)22sin.(
π
π

dxxxdxxxxS
Đặt







=
=




−=
=
x
x
v
dxdu
dxxdv
xu
2
2
2cos
)22(sin
44424
222
πππππ

−=+−=⇔ S
(đvdt)
0.5
0.5
Câu
VII.b
1.0 điểm
Cho chóp tứ giác đều
SABCD
có cạnh bên bằng a và mặt chéo
SAC
là tam
giác đều. Qua
A
dựng mặt phẳng
)(P
vuông góc với
SC
.Tính diện tích thiết
diện tạo bởi mặt phẳng
)(P
và hình chóp.
• Học sinh tự vẽ hình
0,25
• Để dựng thiết diện, ta kẻ
AC' SC.

Gọi
I AC' SO.
= ∩


0,25
• Kẻ
B' D'
//
BD.
Ta có
2
1 1 2 3 3
2 2 3 2 6
AD' C' B'
a a
S B' D' .AC' . BD. .= = =
0,5

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×