Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (2.4 MB, 23 trang )
<span class="text_page_counter">Trang 1</span><div class="page_container" data-page="1">
BỘ GIÁO DỤC ĐÀO TẠO TRƯỜNG ĐẠI HỌC THĂNG LONG
MỤC LỤC
PHẦN 1. GIỚI THIỆU CHUNG...1
1.1. Lý do nghiên cứu...1
1.2. Giới thiệu đề tài nghiên cứu...1
1.2.1. Đối tượng nghiên cứu...1
2.1.1. Lập bảng thống kê mô tả cho các biến GiaNha, DienTich, SoPhongNgu, SoPhongTam, SoTang, TuoiNha và nêu ý nghĩa các giá trị trong bảng...3
2.2. Sử dụng phương pháp OLS để ước lượng phương trình hồi quy tuyến tính của các biến độc lập đến biến phụ thuộc giá nhà...4
2.2.1. Viết mơ hình hồi quy tổng thể...4
2.2.2. Viết phương trình hồi quy mẫu...5
2.2.3. Giải thích ý nghĩa các hệ số hồi quy trong phương trình mẫu...5
2.2.4. Các biến độc lập trong mơ hình giải thích được bao nhiêu % sự thay đổi của biến phụ thuộc giá nhà...6
2.2.5. Kiểm định mức độ phù hợp của mơ hình hồi quy...6
2.2.6. Kiểm định ý nghĩa thống kê cho từng biến độc lập trong mơ hình...6
2.2.7. Khoảng tin cậy cho các hệ số hồi quy trong mô hình và nêu ý nghĩa...9
2.3. Các bài tốn kiểm định...10
2.3.1. Các bài toán kiểm định từng hệ số hồi quy...10
2.3.2. Các bài toán kiểm định nhiều hệ số hồi quy cùng một lúc...11
2.4. Các bài toán dự báo...12
2.4.1. Bài toán điểm dự báo...12
2.4.2. Tìm khoảng thay đổi của biến phụ thuộc khi các biến độc lập thay đổi...12
2.5. Các bài tốn về khuyết tật của mơ hình hồi quy...13
</div><span class="text_page_counter">Trang 3</span><div class="page_container" data-page="3">2.5.1. Kiểm định hiện tượng thiếu biến trong mơ hình...13
2.5.2. Xét hiện tượng đa cộng tuyến trong mơ hình...14
2.5.3. Xét hiện tượng phương sai sai số thay đổi trong mơ hình...15
2.6. Xây dựng mơ hình hồi quy log-lin...16
2.6.1. Viết phương trình hồi quy mẫu cho mơ hình (2) và nêu ý nghĩa các hệ số hồi quy trong mơ hình mới...17
2.7. Lựa chọn mơ hình phù hợp nhất để hồi quy các biến độc lập tác động đến biến phụ thuộc GiaNha...21
2.7.1. Sử dụng chỉ tiêu Adj R-squared để xem mơ hình nào phù hợp nhất trong 2
</div><span class="text_page_counter">Trang 4</span><div class="page_container" data-page="4">PHẦN 1. GIỚI THIỆU CHUNG 1.1. Lý do nghiên cứu
Ở Việt Nam hiện nay thị trường bất động sản là một trong các thị trường có diễn biến phức tạp, ảnh hưởng lớn đến sự phát triển của cả nền kinh tế. Việc xác định giá nhà đất đối với các nghiên cứu kinh tế lượng luôn là một trong những đề tài nghiên cứu được quan tâm nhất của các nhà kinh tế, nhà đầu tư. Nắm rõ tình hình giá cả của nhà đất là một lợi thế đối với các nhà kinh doanh bất động sản cũng như những người có nhu cầu mua nhà ở hay bn bán có lời. Chính vì thế việc nghiên cứu những yếu tố ảnh hưởng tới giá nhà là vô cùng quan trọng trong thực tế. Để nghiên cứu giá nhà ta thường thu thập số liệu về những yếu tố ảnh hưởng đến ngơi nhà đó. Xuất phát từ thực tế khách quan,và nhu cầu cấp thiết đó, nhóm chúng em tiến hành xây dựng các mơ hình hồi quy để tìm ra sự phụ thuộc của giá nhà bởi các yếu tố liên quan.
Do đó “Phân tích các yếu tố ảnh hưởng đến giá nhà ở Hà Nội” là đề tài mà nhóm chúng em muốn tìm hiểu trong q trình học tập mơn phương pháp phân tích định lượng trong kinh tế. Do khả năng có hạn nên nhóm khơng có đủ thời gian đi thu thập được hết số liệu về giá nhà và các yếu tố liên quan, vì vậy nhóm chỉ thu thập được 9 biến là giá nhà, diện tích, số lượng phòng tắm, phòng ngủ, số tầng, tuổi nhà, giấy tờ liên quan đến nhà ở, vị trí giao thông và trật tự an ninh để thực hiện các ước lượng và kiểm định đến giá nhà. Trong quá trình làm bài chúng em đã tiến hành hồi quy các biến diện tích nhà, số lượng phịng ngủ, số lượng phịng tắm, số tầng, tuổi nhà để phân tích, đánh giá sự ảnh hưởng của một số yếu tố đến giá nhà.
1.2. Giới thiệu đề tài nghiên cứu 1.2.1. Đối tượng nghiên cứu
Đối tượng là một số căn nhà ở địa bàn Hà Nội và được tổng hợp lại trong file “GiaNhaOHaNoi.xlsx”.
1.2.2. Ý nghĩa đề tài
Với việc giả định các bài toán dựa trên số liệu trong file “GiaNhaOHaNoi.xlsx” từ đó tìm ra các kết quả trong các bài toán thống kê, ước lượng và kiểm định mà nhóm chúng em đã có thể nhận biết được sự ảnh hưởng của các yếu tố đến giá trị của một ngơi nhà. Từ đó giúp nhóm chúng em đã tìm hiểu được một số yếu tố tác động đến giá nhà và có thể đưa ra lời khuyên cho các nhà đầu tư dựa theo những đánh giá của bài tập nhóm.
</div><span class="text_page_counter">Trang 5</span><div class="page_container" data-page="5">1.3. Qui trình thực hiện, cơng cụ hỗ trợ 1.3.1. Qui trình thực hiện
Bước 1: Chọn đề tài Bước 2: Xác định tham số Bước 3: Xây dựng mơ hình hồi quy
Bước 4: Phân tích, thống kê, ước lượng, kiểm định mơ hình và khắc phục các lỗi trong mơ hình
Bước 5: Nhận xét, kết luận 1.3.2. Công cụ hỗ trợ
Để tiến hành xây dựng mơ hình hồi quy các yếu tố ảnh hưởng đến giá nhà ở Hà Nội thì nhóm đã phân tích các biến trong file “GiaNhaOHaNoi.xlsx” bằng phần mềm stata 14.
</div><span class="text_page_counter">Trang 6</span><div class="page_container" data-page="6">PHẦN 2. XÂY DỰNG MƠ HÌNH KINH TẾ LƯỢNG
Sử dụng dữ liệu trong file “GiaNhaOHaNoi.xlsx” để đánh giá sự ảnh hưởng của các biến độc lập đến biến phục thuộc là giá nhà và có 880 quan sát về giá và nhiều đặc điểm khác của các ngôi nhà dựa trên các biến cụ thể như sau:
Giá nhà (GiaNha: đơn vị tính là triệu đồng/m )<small>2</small>
Diện tích nhà (DienTich: đơn vị tính là m ) <small>2</small>
Số lượng phòng ngủ (SoPhongNgu: đơn vị tính là phịng) Số lượng phịng tắm (SoPhongTam: đơn vị tính là phịng) Số tầng của căn nhà (SoTang: đơn vị tính là tầng) Tuổi nhà (TuoiNha: đơn vị tính là năm)
Giấy tờ của nhà ở (GiayTo), với GiayTo = 1 là nhà có đầy đủ giấy tờ hợp pháp và hợp lệ về quyền sử dụng đất, GiayTo = 0 là nhà chưa có đầy đủ giấy tờ hợp pháp và hợp lệ về quyền sử dụng đất
Vị trí của nhà ở (ViTri), với ViTri = 1 là vị trí giao thơng đi lại khơng thuận tiện (hay tắc đường), ViTri = 0 là vị trí giao thơng đi lại thuận tiện (ít tắc đường)
An ninh quanh nơi ở (AnNinh), với AnNinh = 1 là trật tự, an tồn, khơng xảy ra mất trộm, và AnNinh = 0 là trật tự khơng an tồn, có thể xảy ra mất trộm.
</div><span class="text_page_counter">Trang 7</span><div class="page_container" data-page="7">Giá nhà trung bình là 149.5483 triệu đồng/m , độ lệch chuẩn của giá nhà là 68.74778 triệu đồng/ m , giá nhà nhỏ nhất là 34 triệu đồng/m và giá nhà lớn nhất là 446.5 triệu<small>22</small>
số tầng trung bình của các căn nhà là 2.882955 tầng, độ lệch chuẩn của số tầng trong các căn nhà là 1.033536 tầng, căn nhà có số tầng ít nhất là 2 tầng và căn nhà có số tầng cao nhất là 5 tầng.
Tuổi nhà (số năm đã ở tính từ lúc xây dựng và hồn thiện xong) trung bình của các căn nhà là 12.91136 năm, độ lệch chuẩn của tuổi nhà là 8.455403 năm, căn nhà có tuổi nhà thấp nhất là 2 năm và căn nhà có tuổi nhà lớn nhất là 40 năm.
2.2. Ước lượng phương trình hồi quy tuyến tính của các biến độc lập đến biến phụ thuộc giá nhà
2.2.1. Viết mơ hình hồi quy mẫu:
= B1 + B2 * DienTich + B3 * SoPhongNgu + B4 * SoPhongTam + B5 * SoTang + B6 * TuoiNha + B7 * GiayTo + B8 * ViTri + B9 * AnNinh + U
2.2.2. Viết phương trình hồi quy mẫu:
Sử dụng hàm: regress GiaNha DienTich SoPhongNgu SoPhongTam SoTang TuoiNha GiayTo ViTri AnNinh
Kết quả:
</div><span class="text_page_counter">Trang 8</span><div class="page_container" data-page="8">Hàm hồi quy mẫu là:
= 14.19915 + 0.1136012 DienTich + 5.037552 SoPhongNgu + 28.32838 SoPhongTam + 17.00438 SoTang 0.6303424 TuoiNha + 8.888709 GiayTo 25.09583 ViTri + 5.769944 AnNinh
2.2.3. Giải thích ý nghĩa các hệ số hồi quy trong phương trình:
= 14.19915, với điều kiện các yếu tố khác không đổi, khi tất cả các biến độc lập trong mơ hình đều = 0 thì giá nhà trung bình giảm 14.19915 triệu đồng/m . <small>2</small>
= 0.1136012, với điều kiện các yếu tố khác không đổi, khi diện tích nhà tăng 1 m<small>2 </small>thì giá nhà trung bình tăng 0.113601 triệu đồng/m . <small>2</small>
= 5.03755, với điều kiện các yếu tố khác không đổi, khi số phịng ngủ trong một ngơi nhà tăng lên 1 phịng thì giá nhà trung bình tăng 5.03755 triệu đồng/m <small>2</small>
= 28.32838, với điều kiện các yếu tố khác khơng đổi, khi số phịng tắm trong một ngơi nhà tăng lên 1 phịng thì giá nhà trung bình tăng 28.32838 triệu đồng/m . <small>2</small>
= 17.00438, với điều kiện các yếu tố khác không đổi, khi số tầng trong một ngôi nhà tăng lên 1 tầng thì giá nhà trung bình tăng 17.00438 triệu đồng/m .<small>2</small>
= 0.6303424, với điều kiện các yếu tố khác không đổi, khi tuổi nhà tăng lên 1 năm thì giá nhà trung bình giảm 0.6303424 triệu đồng/m .<small>2</small>
= 8.888709, với điều kiện các yếu tố khác khơng đổi thì giá nhà trung bình của các căn nhà có đầy đủ giấy tờ hợp pháp và hợp lệ về quyền sử dụng đất sẽ nhiều hơn giá nhà trung bình của các căn nhà chưa có đầy đủ giấy tờ hợp pháp và hợp lệ về quyền sử dụng đất là 8.888709 triệu đồng/m . <small>2</small>
</div><span class="text_page_counter">Trang 9</span><div class="page_container" data-page="9">= 25.09583, với điều kiện các yếu tố khác khơng đổi thì giá nhà trung bình của các căn nhà có vị trí giao thông đi lại không thuận tiện (hay tắc đường) thấp hơn giá nhà trung bình của các căn nhà có vị trí giao thơng đi lại thuận tiện (ít tắc đường) là 25.09583 triệu đồng/m . <small>2</small>
= 5.769944, với điều kiện các yếu tố khác khơng đổi thì giá nhà trung bình của các căn nhà có trật tự an tồn, khơng xảy ra mất trộm nhiều hơn giá nhà trung bình của các căn nhà có trật tự khơng an tồn, có thể xảy ra mất trộm là 5.769944 triệu đồng/m .<small>2</small>
2.2.4. Các biến độc lập trong mơ hình giải thích được bao nhiêu % sự thay đổi của biến phụ thuộc giá nhà
Ta có: Adj R-squared = 0.9176
Ý nghĩa: R bình phương hiệu thể hiện các biến độc lập trong mơ hình đang giải thích được khoảng 91.76% sự biến thiên của biến phụ thuộc GiaNha trong mơ hình. 2.2.5. Kiểm định sự phù hợp của mơ hình
Mơ hình hồi quy trên có phù hợp tại mức ý nghĩa α = 5%? <small> Source SS df MS Number of obs = 880</small>
<small>. reg GiaNha DienTich SoPhongNgu SoPhongTam SoTang TuoiNha GiayTo ViTri AnNinh</small>
Ta thấy: Các biến DienTich, SoPhongNgu, SoPhongTam, SoTang, TuoiNha, GiayTo, ViTri đều có p-value < α = 5% trừ biến AnNinh > α => Các biến không đồng thời =0 Kết luận: Chấp nhận H1, bác bỏ H0 và mơ hình phù hợp tại mức ý nghĩa 5%
</div><span class="text_page_counter">Trang 10</span><div class="page_container" data-page="10">2.2.6. Khoảng tin cậy cho các hệ số hồi quy trong mơ hình và nêu ý nghĩa
Ước lượng khoảng tin cậy 95% cho các hệ số hồi quy trong mơ hình và nêu ý nghĩa?
Ý nghĩa:
Khoảng tin cậy 95% cho 1 là [-29.64082, 1.242533], với điều kiện các yếu tố khác không đổi, khi tất cả các biến độc lập trong mơ hình đều = 0 thì giá nhà trung bình thuộc khoảng [-29.64082, 1.242533] triệu đồng/m . <small>2</small>
Khoảng tin cậy 95% cho 2 là [0.0905574, 0.1366449] , với điều kiện các yếu tố khác khơng đổi, khi diện tích nhà tăng 1 m thì giá nhà trung bình tăng ít nhất là 0.0905574<small>2 </small>
triệu đồng/m và tăng nhiều nhất là 0.1366449 triệu đồng/m<small>22</small>
Khoảng tin cậy 95% cho 3 là [2.680996, 7.394107], với điều kiện các yếu tố khác không đổi, khi số phịng ngủ trong một ngơi nhà tăng lên 1 phịng thì giá nhà trung bình tăng ít nhất là 2.680996 triệu đồng/m và tăng nhiều nhất là 7.394107 triệu<small>2</small>
đồng/m<small>2</small>
Khoảng tin cậy 95% cho 4 là [24.39889, 32.25786], với điều kiện các yếu tố khác khơng đổi, khi số phịng tắm trong một ngơi nhà tăng lên 1 phịng thì giá nhà trung bình tăng ít nhất là 24.39889 triệu đồng/m và tăng nhiều nhất là 32.25786 triệu<small>2</small>
đồng/m<small>2</small>
Khoảng tin cậy 95% cho 5 là [12.98291, 21.02585], với điều kiện các yếu tố khác không đổi, khi số tầng trong một ngơi nhà tăng lên 1 tầng thì giá nhà trung bình tăng ít nhất 12.98291 triệu đồng/m và tăng nhiều nhất là 21.02585 triệu đồng/m<small>22</small>
Khoảng tin cậy 95% cho 6 là [-1.097405, -0.1632796], với điều kiện các yếu tố khác không đổi, khi tuổi nhà tăng lên 1 năm thì giá nhà trung bình giảm nhiều nhất là 1.097405 triệu đồng/m và giảm ít nhất là 0.1632796 triệu đồng/m<small>22</small>
</div><span class="text_page_counter">Trang 11</span><div class="page_container" data-page="11">Khoảng tin cậy 95% cho 7 là [2.422651, 15.35477] với điều kiện các yếu tố khác khơng đổi thì giá nhà trung bình của các căn nhà có đầy đủ giấy tờ hợp pháp và hợp lệ về quyền sử dụng đất sẽ nhiều hơn giá nhà trung bình của các căn nhà chưa có đầy đủ giấy tờ hợp pháp và hợp lệ về quyền sử dụng đất ít nhất là 2.422651 triệu đồng/m và<small>2</small>
nhiều nhất là 15.35477 triệu đồng/m<small>2</small>
Khoảng tin cậy 95% cho 8 là [-31.27169, -18.91996], với điều kiện các yếu tố khác khơng đổi thì giá nhà trung bình của các căn nhà có vị trí giao thơng đi lại không thuận tiện (hay tắc đường) thấp hơn giá nhà trung bình của các căn nhà có vị trí giao thơng đi lại thuận tiện (ít tắc đường) ít nhất là 18.91996 triệu đồng/m và nhiều nhất là<small>2</small>
31.27169 triệu đồng/m<small>2</small>
Khoảng tin cậy 95% cho 9 là [-0.37986, 11.91975], với điều kiện các yếu tố khác không đổi thì giá nhà trung bình của các căn nhà có trật tự an tồn, khơng xảy ra mất trộm sẽ có một khoảng chênh lệch so với giá nhà trung bình của các căn nhà có trật tự khơng an tồn, có thể xảy ra mất trộm là [-0.37986, 11.91975] triệu đồng/m .<small>2</small>
2.3. Các bài toán kiểm định
2.3.1. Các bài toán kiểm định hệ số hồi quy
Bài toán 1: Kiểm định ý kiến với điều kiện các yếu tố khác không đổi, khi tuổi nhà tăng 1 năm thì các căn nhà giảm 0.7 triệu đồng/m . Tại α = 5%?<small>2</small>
Giả thuyết: H0: 6 = -0.7 H1: 6 ≠ -0.7 Các bước thực hiện:
. scalar tstat=(_b[ TuoiNha ]+0.7)/_se[ TuoiNha ] . di “t-statistic for H0: beta6=-0.7 is ”tstat . di “t tới hạn = ” invttail(e(df_r),0.025) . di “-t tới hạn = ”invttail(e(df_r),0.975) Kết quả:
</div><span class="text_page_counter">Trang 12</span><div class="page_container" data-page="12">Kết luận: Tại α = 5%, đủ bằng chứng thống kê để cho rằng khi tuổi nhà tăng 1 năm thì các căn nhà giảm 0.7 triệu đồng/m<small>2</small>
Bài toán 2 : Kiểm định tại α = 5%, khi diện tích nhà tăng lên 100 m và đồng thời tăng<small>2</small>
số tầng trong ngơi nhà đó lên 1 tầng thì giá trị ngơi nhà tăng lên nhiều hơn 20 triệu Kết luận: Tại α = 5%, đủ bằng chứng thống kê để cho rằng khi diện tích nhà tăng lên 100 m và đồng thời tăng số tầng trong ngơi nhà đó lên 1 tầng thì giá trị ngôi nhà tăng<small>2</small>
lên nhiều hơn 20 triệu đồng/m<small>2</small>
2.4. Bài toán dự báo
Dự báo giá trị của một căn nhà khi nó có diện tích là 80m , có 6 phòng ngủ, 3 phòng tắm,<small>2</small>
4 tầng, đã được đưa vào sử dụng 10 năm kể từ khi xây dựng xong (tuổi nhà = 10 năm), có đầy đủ giấy tờ hợp pháp và hợp lệ về quyền sử dụng đất, vị trí giao thơng đi lại khơng thuận tiện (hay tắc đường) và trật tự, an tồn, khơng xảy ra mất trộm
Các bước thực hiện:
scalar dubaoGiaNha=_b[_cons] + _b[DienTich] * 80 +_b[SoPhongNgu] * 6 +_b[SoPhongTam] * 3 + _b[SoTang] * 4 +_b[Tuoi Nha] * 10 +_b[GiayTo] * 1 +_b[ViTri] * 1 +_b[AnNinh] * 1
scalar list dubaoGiaNha Kết quả:
</div><span class="text_page_counter">Trang 13</span><div class="page_container" data-page="13">Kết luận: khi một căn nhà có diện tích là 80m , có 6 phịng ngủ, 3 phịng tắm, 4 tầng, đã được đưa vào sử dụng 10 năm kể từ khi xây dựng xong (tuổi nhà = 10 năm), có đầy đủ giấy tờ hợp pháp và hợp lệ về quyền sử dụng đất, vị trí giao thơng đi lại không thuận tiện (hay tắc đường) và trật tự, an tồn, khơng xảy ra mất trộm thì giá trị của căn nhà đó là 161.37631 triệu đồng/m<small>2</small>
2.5. Các bài tốn về khuyết tật của mơ hình hồi quy 2.5.1. Kiểm định hiện tượng thiếu biến trong mơ hình
Kiểm định mơ hình trên có hiện tượng thiếu biến khơng tại tại α = 5%? H0: mơ hình trên có hiện tượng thiếu biến
H1: mơ hình trên khơng có hiện tượng thiếu biến
P-value= (Prob > F) = 0.0000 < α = 0.05 => Chấp nhận H0, bác bỏ H1. Kết luận: tại α = 5% thì mơ hình có hiện tượng thiếu biến. Do thời gian còn hạn chế nên trong q trình thu thập số liệu nhóm đã bỏ sót nhiều yếu tố quan trọng khác tác động đến giá nhà ví dụ như hướng nhà, địa hình, vật liệu xây dựng…). Để khắc phục hiện tượng thiếu biến ở mơ hình trên thì cần thu thập them các số liệu liên quan đến nhà ở.
2.5.2. Kiểm định hiện tượng thừa biến
Kiểm định mơ hình trên có hiện tượng thiếu biến không tại tại α = 5%? Các bước thực hiện:
. Hồi quy: regress GiaNha DienTich SoPhongNgu SoPhongTam SoTang TuoiNha GiayTo ViTri AnNinh
</div><span class="text_page_counter">Trang 14</span><div class="page_container" data-page="14">. Nhận thấy các biến TuoiNha GiayTo AnNinh có p-value > α
Kết luận: tại α = 5% thì mơ hình có hiện tượng thừa biến. Cách khắc phục là loại bỏ biến AnNinh, hồi quy lại như sau:
</div>