15/9/2021
1
DEPARTMENT OF EDUCATION AND TRAINING
HOCHIMINH CITY UNIVERSITY OF TECHNOLOGY
AND EDUCATION
Mechanisms and Machine Components
Design
CHAPTER 2: KINEMATIC ANALYSIS OF
PLANAR MECHANISMS
15-Sep-21
2
Theoretical contents
I. Position Analysis
II. Velocity Analysis
III. Acceleration Analysis
TS. Phan Cơng Bình 15-Sep-21
1
15/9/2021
3 A
Kinematic theory V AO
I. Link translating motion (tịnh tiến):
• Velocity of all point are the same ωA
• Tangent with trajectory
• Acceleration Vectors are collinear O
II. Links rotate around point O ( Hình 1) A
• Velocity vector : 𝑉 = 𝜔 . 𝑙
Value : 𝑉 = 𝜔 . 𝑙 𝑎
𝑎
Direction: ┴ OA and aligned with 𝜔
• Acceleration : 𝑎 =𝑎 +𝑎 O 𝜀 Hình 1
Normal Acc : 𝑎 = 𝜔 . 𝑙 = : Hướng từ A → O
Tangent Acc: 𝑎 = 𝜀. 𝑙 : ┴ OA and aligned with 𝜀̅ .
TS. Phan Cơng Bình 15-Sep-21
4 B
Kinematic theory
VB
III. Planar kinematics (song phẳng): ( Hình 2)
V BA
• Velocity : 𝑉 =𝑉 +𝑉 ωA
• Acceleration : 𝑎 = 𝑎 + 𝑎 + 𝑎
IV. Coincident A (A1 & A2 ≡ A) ( Hình 3)
A VA
Khâu 1 quay quanh trục cố định hoặc chuyển
động song phẳng với vận tốc 𝜔 B
• Velocity : 𝑉 = 𝑉 + 𝑉 𝑎𝑎
• Acceleration : 𝑎 = 𝑎 + 𝑎 + 𝑎 𝜀 𝑎 𝑎
where, 𝑎 Fig. 2
Relative Acc 𝑎 : // sliding direction Link 1&2 A1 ≡ A2 ≡ A 1
Coriolix Acc 𝑎 = 𝜔 ˄𝑉 : Phương chiều của
𝑉 đã quay 90° theo chiều 𝜔
Khâu 1 tịnh tiến hoặc cố định 𝑎 =0 ; 𝑎 =0 2Hình 3
TS. Phan Cơng Bình 15-Sep-21
2
15/9/2021
5
I. Position Analysis
1.1 Position analysis of mechanism
- As shown in the given mechanism, determine the tracking of points and links
belong to mechanism
Ex: determine the tracking point C if link AB rotates 1 revolution
B2
B3 B B1
2
B4 A B8 3C
B5 B6 C1
e
C3
B7
TS. Phan Cơng Bình 15-Sep-21
6 I. Position Analysis
1.2 Example Solve
Ex1 :
B2
B3 B B1
2
B4 A B8 3C
e
B5 C4 C3C5 C6 C2 C7 C1 C8
B6
B7
TS. Phan Cơng Bình
15-Sep-21
3
7 I. Position Analysis 15/9/2021
4
1.2 Example
EX2: Determine the trajectory of point B,C and swing angle γα of link C if
link AB rotates 1 revolution
AB 0,5m
BC CD AD 0,8m C3
B2 C1
B3 B1 2 C
1B
3
B4 A 4 B8 D
B5 B7
TS. Phan Cơng Bình B6
8 I. Position Analysis
1.2 Example Solution
EX2:
C7 C3 C2 C8
B3
B2 C4 C1
B4
C6 C5 B 2 C 1
1B 3
γα
A 4 B8 D
B5 B7
B6
TS. Phan Cơng Bình
15/9/2021
9
II. Velocity Analysis
2.2 Example B 2 C
VD: Given mechanism ABCD
𝑙 = 𝑙 = 0,5𝑚; ω1= 10 rad/s 1 3
a) Draw diagram ω1 300
b) Determine 𝑉 , ω2, ω3 A D
4
Solve:
𝑉 =ω1. 𝑙 =5m/s 𝑉B 2 C
B and C belong to link 2
𝑉 =𝑉 +𝑉 (1) ω2
C and D belong to link 3
𝑉 =𝑉 +𝑉 (2) 1 𝑉𝑉 3
TS. Phan Công Bình ω1 ω3
300
A 4 D
15-Sep-21
10
II. Velocity Analysis
2.2 Example
* Draw diagram tutorial
• Set 1 point P ( Coordinate) b VB P
• S𝑒𝑡 𝑠𝑐𝑎𝑙𝑒 𝑉 µ =
• From (1) draw Pb= µ and draw bx ┴ BC V BC
CB
300 VCD┴ CD
• From (2) draw Pd = µ =0=>d≡P c
draw Py ┴CD. Then, bx & Py cut at point c
Velocity diagram
TS. Phan Cơng Bình 15-Sep-21
5
15/9/2021
11 II. Velocity Analysis
2.2 Example
• Từ họa đồ ta có: b𝑉
P
Pc = 2Pb ⟺Vc=2Vb=10m/s
300
VCB 2CB VC cos 300 10 32 (m / s) 𝑉
CB 0.5m 𝑉
2 VCB 10 3(rad / s) c
CB
Velocity diagram
VCD 3CD VC 10(m / s)
CD 2. AD 1(m)
3 VCD 10(rad/ s)
CD
TS. Phan Cơng Bình 15-Sep-21
12
II. Velocity Analysis
2.2 Example B 2C
Exercise 1: ω1 3
2 AB BC CD 98"
A 4
1 10 rad s
a) Draw velocity diagram
b) Determine 𝑉 , ω2, ω3
D
B Exercise 2:
2 AB 0, 6m 1 10 rad s
1
2 ,Vc ?
3
300 C VC VB VCB
A Hint:
VC3 VC 4 VC3C 4
4
TS. Phan Cơng Bình 15-Sep-21
6
15/9/2021
13
III. Acceleration Analysis
EX 1: B 2 2 C
1 10 rad s const 𝑎 𝑎
AB BC 0,5m 1𝑎 𝑎
3
𝑎 3
ω1
a) Draw Acceleration Diagram
b) ac , 2,3 ? 300
A D
4
ω2 =10 3 (rad / s) ω1=const=>ε1 =0 a BA t =ε1.lAB =0;
ω3 =10 (rad / s)
n
aBA
a B =a BA t n 2 m
=a BA =ω1 .lAB =50 2
aBA 0 s
B & C belong to Link 2 C & D belong to Link 3
n t n t
aC =aB +aCB +aCB (1) aC =a D +aCD +aCD (2)
a B a n =ω12 .l AB =5 0 m 2 aD 0 m 2 s
BA
s aCD n =ω32. CD =100 m 2
a n = ω 2 .l = 1 50 m
C B 2 C B 2 s
s
TS. Phan Cơng Bình
14
III. Acceleration Analysis
Draw Acceleration Diagram BC π CD
𝑎
• π: gốc (cực) 𝑎 a 𝑎 300
aB nCB
nBA 600
• a
ab 𝑎 𝑎
n t 𝑎
(1) aC = a B +aCB +aCB
n t
(2) aC = aD +aCD +aCD
a aCB n aCD n cos 300 236.6 m / s2
aCB t a tan 600 410 m / s2 tCB tCD
aCD t a / cos 600 437.2 m / s2
t
ac a CD t 2 a CD n 2 aCB 2. CB 2
t
TS. Phan Cơng Bình aCD 3.CD 3
7
15/9/2021
15
III. Acceleration Analysis
EX2: AB 0,6m;1 10 rad s
𝑉 B
a)vC ,2 ?
ω2
b)aC,2 ?
Solution 𝑉 2
1 Velocity 1 300
ω1
A C3
VB 1.AB 6 m s ┴BC
𝑉4
* B & C belong to Link 2 P
VC VB VCB (1)
* C3 & C4 ≡ C (Link 3 sliding in Link 4) // AC b
c
VC3 VC4 VC3C4 (2)
b c vc vb 6m s
vCB 2.BC 0 2 0
TS. Phan Cơng Bình
16
III. Acceleration Analysis
EX2: B
2 Acceleration 𝑎
1 const 1𝑎 2 C3
aB a BA n 12. AB 60
ω1 300 4𝑎
* B & C belong to Link 2 A
n
n t aCB 2. BC 0 2
aC aB aCB aCB t
aCB CB
* C3 & C4 ≡ C (Link 3 is sliding in Link 4) π c // AC
(khâu 3 trượt trên khâu 4 cố định)
t t
aC aC3 aC4 aC3C4 300 aCB
𝑎 ┴BC
ac aB tan 300 60 32 m / s2 b
t
aB 120 a CB
aCB t 0 2.CB 2
cos30 3 CB
TS. Phan Công Bình
8
15/9/2021
17
III. Acceleration Analysis
3.2 Example AB 0, 4m, BC 0,8m
vB 1 50 rad s const
ω1 B
A 4 a) vC , 2 ?
1 2
C
b) aC,2 ?
Solve:
v3 50.0, 4 20 m s b
vC vB vCB C
p //AC
vC vC3 vC4 vC3C4
C p vC 0
vCB 2. BC vB 2
2 2,5rad s
TS. Phan Cơng Bình 15-Sep-21
18
III. Acceleration Analysis
3.2 Example
Exercise 3:
1 const 1 0
a BA t 1. AB 0 Cb bπ
C
n
a B a BA a BA
t
aBA 0
n 2 m
a BA 1. AB 10 2
s
┴BC C3, C4 C
* B and C belong link 2 aC a3 aC4 aC3C4
n t 15m
aC a B aCB aCB aC
n 2 m 2
aCB 2. BC 5 2 s
s
a3t 2. BC 0
2 0
TS. Phan Cơng Bình 15-Sep-21
9
15/9/2021
19
TS. Phan Cơng Bình 15-Sep-21
10