Tải bản đầy đủ (.pdf) (34 trang)

Hrm410 chapter 8888888888888

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (3.54 MB, 34 trang )

15/03/2021

COPYRIG HT © 2015 PEARSON EDU CATION , IN C.

1-1

Chapter8– Measurement

COPYRIG HT © 2015 PEARSON EDU CATION , IN C.

8-2

1


15/03/2021

LearningObjectives
Afterstudyingthischapter,you shouldbeableto:
ãDescribewhymeasurementandassessmentareimportantto
staffing
ãDescribepatternsindata
ãUnderstandcorrelationandregressionandexplainhoweachis
used
ãDefinebothpracticalandstatisticalsignificance,andexplainwhy
theyareimportant
ãDefinereliabilityandvalidityand explainhowtheyaffectthe
evaluationofameasure
ãExplainwhystandardizationandobjectivity areimportantin
measurement
COPYRIG HT â 2015 PEARSON EDU CATION , IN C.



8-3

WhyIsProper
MeasurementImportant?
Effectivemeasurementanddataanalyticscanresultina
competitiveedge
Improperlyassessing andmeasuringcandidate
characteristicscanleadto:
§ Systematicallyhiringthewrongpeople
§ Offendingandlosinggoodcandidates
§ Exposingyour companytolegalaction

Therearemanylegalissues involvedwithcandidate
assessment andmeasurement

COPYRIG HT © 2015 PEARSON EDU CATION , IN C.

8-4

2


15/03/2021

WhatIsMeasurement?
Measurement istheprocessofassigningnumbersaccordingtosomerule
orconventiontoaspectsofpeople,jobs,jobsuccess,oraspectsofthe
staffingsystem
Themeasures enableimprovementofthestaffingsystembyidentifying

patternsusefulforunderstandingandpredictingrelevantprocessesand
outcomes
Themeasures relevanttostaffingarethosethatassess:
§ Thecharacteristics ofthejob,which enablesthecreationofjobrequirements
andjobrewardsmatrices
§ Aspectsofthestaffingsystem suchasthenumber ofdaysajobpostingisrun,
whereitisrun, andtherecruiting message
Đ Thecharacteristics ofjobcandidates suchasabilityorpersonality
Staffingoutcomes,suchasperformance orturnover

COPYRIG HT â 2015 PEARSON EDU CATION , IN C.

8-5

WhatIsData?
Thenumericaloutcomesofmeasurementaredata
Thereare2typesofdata:
§
§

Predictive data isinformation aboutmeasuresusedtomake
projections aboutoutcomes.
Criterion data isinformation aboutimportant outcomes ofthe
staffingprocess.

o
o

Traditionally, thisdataincludesmeasurementofemployeejobsuccess,
whichistheorganization’suniquedefinitionofsuccessandperformance

inthejobandinthefirm.
Criteriondatashouldalsoincludealloutcomedatathatisrelevanttothe
evaluationoftheeffectivenessofthestaffingsystemagainstitsgoals.
Thismayincludemeasuresofjobsuccess,time-to-hire,promotionrates,
andtenurerates aswellasjobandcompanyengagement, fitwith
companyvalues,andwillingnesstohelpotheremployees.

COPYRIG HT © 2015 PEARSON EDU CATION , IN C.

8-6

3


15/03/2021

TypesofMeasurements
ĐNominal:numbers areassignedtodiscretelabels
orcategories(e.g.,race,gender,collegemajor)
ĐOrdinal:attributesarerankedinascendingor
descending order(e.g.,rankingfrombesttoworst
performance)
ĐInterval:zeropointisarbitrarybutdistance
betweenscoreshasmeaning(e.g.,intelligenceor
interviewscores)
ĐRatio:distancebetweenscoreshasmeaningand
thereisatruezeropoint(e.g.,salary,typingspeed)
COPYRIG HT â 2015 PEARSON EDU CATION , IN C.

8-7


DescribingData
Scoring:Theprocessofassigningnumericalvalues
duringmeasurement
Rawscores:theunadjusted scoresonameasure

§ Criterion-referencedmeasures:measuresinwhichthescores
havemeaninginandofthemselves
§ Norm-referencedmeasures:measuresinwhichthescoreshave
meaningonly incomparisontothescoresofother respondents

Normalcurve:asymmetrical,bell-shaped curve
representingthedistribution ofacharacteristic

COPYRIG HT © 2015 PEARSON EDU CATION , IN C.

8-8

/>
4


15/03/2021

TheNormalCurve

8-9

COPYRIG HT © 2015 PEARSON EDU CATION , IN C.


DescribingtheNormalCurve
Percentilescore:arawscorethathasbeenconverted intoan
expressionofthepercentageofpeoplewhosescorefallsator
belowthatscore
Centraltendency:describesthemidpointorcenterofdata
§ Mean:theaverage ofthescores
§ Median:themiddlescore,orthepointbelowwhich50percentofthescoresfall
§ Mode:themostcommonlyobservedscore(bimodal=twomodes)

Variability:describesthespreadofthedataaroundthemidpoint

§ Range:thedifferencebetween the highest&lowestobservedscore
§ Outlier: scoremuchhigherorlowerthanmostofthescoresinadistribution
Đ Variance:amathematical measure ofspreadbasedonsquareddeviationsofscores
fromthemean
Đ Standarddeviation:positivesquarerootofthevariance;conceptuallysimilartothe
average distancefromthemeanofasetofscores

COPYRIG HT â 2015 PEARSON EDU CATION , IN C.

8-10

5


15/03/2021

StandardScores
Standardscores:Convertedrawscoresthat
indicatewhereaperson’s scoreliesincomparison

toareferentgroup.
§ Acommonstandardscoreisthez score.
§ Az scoreindicates howmanyunitsofstandarddeviationsthe
individual’s scoreisaboveorbelowthemeanofthereferentgroup

Az scoreisnegativewhenthetargetindividual’s
rawscoreisbelowthereferentgroup’s mean,and
positive whenthetargetindividual’s rawscoreis
abovethereferentgroup’s mean

COPYRIG HT © 2015 PEARSON EDU CATION , IN C.

8-11

ConvertingRawScores
toStandardScores

Mean
StdDev

18.25
3.00

Mean 78.25
StdDev 7.46

zscore =(Individual’srawscore– Referent groupmean)/Referentgroup
standarddeviation)
Meaningfullycombiningtherawscoreswouldbedifficult. Combining thez
scoresiseasyandresults inasinglenumber reflecting howeachcandidatedid

onbothoftheassessmentsrelativetotheother candidates.

COPYRIG HT © 2015 PEARSON EDU CATION , IN C.

8-12

6


15/03/2021

Shiftingthe
NormalApplicantTalentCurve
ĐWhenmakingselectiondecisions,itisoftenassumed
thatintheapplicantpool,thedistributionofapplicant
fitwiththejobreflectsthenormalcurve.Alargeburden
isthenplacedontheselection systemtoaccurately
identifywhichcandidatesareinthefarrighttailofthe
normalcurve.
ĐHowever,manyofthemostdesirablepeopleforthe
positionarelikelytobeactivelyandhappilyemployed
elsewhereandaresemi-passivejobseekersatbest.In
thiscase, thedistributionofapplicantfitwiththejob
mightresembletheAdistributionshownonthenext
slide.
8-13

COPYRIG HT â 2015 PEARSON EDU CATION , IN C.

ShiftingtheApplicantTalentCurve


COPYRIG HT © 2015 PEARSON EDU CATION , IN C.

8-14

7


15/03/2021

Shiftingthe
NormalApplicantTalentCurve
ĐIfdonestrategically,sourcingandrecruitingcan
discouragepoorfitsfromapplyingandincreasethe
numberofhighqualitypassiveandsemi-passive
candidateswhoapply.
ĐThisshiftsthecurvetoreflectadistributionlikethat
shownbytheBdistribution.
ĐTheBdistributionclearlyreducestheburdenonthe
selectionsystemtoidentifyqualitycandidatesand
significantlyincreasesthelikelihoodofidentifyinga
high-qualitycandidate.

COPYRIG HT â 2015 PEARSON EDU CATION , IN C.

8-15

CorrelationCoefficient
Correlationcoefficient,alsocalledPearsonsrorthe
bivariatecorrelation,isasinglenumberthatranges

from-1to+1thatreflectsthedirection (positiveor
negative)andmagnitude (strength)oftherelationship
betweentwovariables.

Đ Avalueofr=0indicatesthatvaluesofonemeasureare
unrelatedtovaluesoftheothermeasure.
Đ Avalueofr=+1meansthatthereisaperfectlylinear,
positiverelationshipbetweenthetwomeasures;asvalues
ofonemeasureincrease,valuesoftheother measure
increaseexactlythesameamountinstandarddeviations.
Đ Avalueofr=-1meansthatthereisaperfectlynegativeor
inverserelationshipbetweenthetwomeasures;asvaluesof
onemeasureincrease,valuesoftheothervariabledecrease
exactlythesameamountinstandarddeviations.
COPYRIG HT â 2015 PEARSON EDU CATION , IN C.

8-16

8


15/03/2021

GraphingCorrelations
Scatterplot:graphicalillustrationoftherelationship
betweentwovariables

Đ Eachpoint onthechartcorresponds tohowapersonscoredon
ameasureand howheor sheperformedon thejob


COPYRIG HT â 2015 PEARSON EDU CATION , IN C.

8-17

ScatterPlotofr=-.43
Would this test be useful in making hiring decisions?

COPYRIG HT © 2015 PEARSON EDU CATION , IN C.

8-18

9


15/03/2021

ScatterPlotofaCurvilinear
Relationship(r=.04)

COPYRIG HT © 2015 PEARSON EDU CATION , IN C.

8-19

DiagramsforCorrelations

COPYRIG HT © 2015 PEARSON EDU CATION , IN C.

8-20

10



15/03/2021

DiagramsforCorrelations

COPYRIG HT © 2015 PEARSON EDU CATION , IN C.

8-21

DiagramsforCorrelations

COPYRIG HT © 2015 PEARSON EDU CATION , IN C.

8-22

11


15/03/2021

ExamplesofUsesof
CorrelationCoefficients
ĐRelatingstoresizewithstaffinglevels
ĐRelatingseniorityinafirmwithjobperformance
ĐRelatingthetimetofillajobwithnew-hirequality
ĐRelatingqualityofnewhireswithbusiness
performanceandcustomersatisfaction

COPYRIG HT â 2015 PEARSON EDU CATION , IN C.


8-23

InterpretingCorrelations
ĐSamplingerror: Whenyouusestatistics,including
correlations,todrawinferencesorconclusions,youhaveto
beconcernedaboutsamplingerror.Samplingerroristhe
variabilityinsamplecorrelationsduetochance.
ĐYoucanaddresssamplingerrorthroughstatistical
significancetestingprocedures.

COPYRIG HT â 2015 PEARSON EDU CATION , IN C.

8-24

12


15/03/2021

InterpretingCorrelations,cont.
Statisticalsignificance:thedegreetowhichtheobserved
relationship isnotlikelyduetosamplingerror.

§ Aminimumrequirementforestablishingameaningfulrelationship.

Practicalsignificance:theobserved relationship islarge
enoughtobeofvalueinapracticalsense.

§ Inalargeenough sample,avery smallcorrelationwouldbe

statisticallysignificantbuttherelationshipmaynotbestrong
enough tojustifytheexpenseandtimeofusingthepredictor.
§ Aninexpensiveassessmentsystemmaybeusefulevenifthe
correlationissmall.
§ Alternatively,ifanassessmentthatcorrelated.15withjobsuccess
wasexpensive,tookalongtimetoadminister,andwasnotlikedby
jobcandidates,itmaynotbeworthusingevenifitisastatistically
significantpredictorofjob success.
8-25

COPYRIG HT © 2015 PEARSON EDU CATION , IN C.

MultipleRegression
ĐAstatistical techniquethatpredictsanoutcomeusingone
ormorepredictorvariables;itidentifiestheidealweightsto
assigneachpredictortomaximizethevalidityofasetof
predictors
ĐTheanalysisisbasedoneachpredictor scorrelationwith
theoutcomeandthedegreetowhichthepredictorsare
themselves correlated
ĐMultipleregressionexaminestheeffectofeachpredictor
variableafterstatistically controllingfortheeffectsofother
predictorsintheequation

COPYRIG HT â 2015 PEARSON EDU CATION , IN C.

8-26

13



15/03/2021

XandZCorrelatedwithY
butUncorrelatedwithEachOther

COPYRIG HT © 2015 PEARSON EDU CATION , IN C.

8-27

XandZCorrelatedwithYandHighly
CorrelatedwithEachOther

COPYRIG HT © 2015 PEARSON EDU CATION , IN C.

8-28

14


15/03/2021

MoreTypicalExample

COPYRIG HT © 2015 PEARSON EDU CATION , IN C.

8-29

Exampleofa
MultipleRegressionEquation

Jobsuccesspredicted =Constant+(b1 *Testscore1 )+(b2 *Testscore2 )
+(b3 *Testscore3 )…
Jobsuccesspredicted =10+(2*Interview)+(1*Personality)
+(.2*Jobknowledge)
Ifsomeonescores50ontheinterview, 27onthepersonalitytest, and20onthe
jobknowledgetest,whatisthepredicted jobsuccessscore?
Jobsuccesspredicted =10+(2*50)+(1*27)+(.2*20)
Jobsuccesspredicted =141
141isthencomparedwith predicted jobsuccessscoresofother candidatesto
determine whoshouldbeselected
COPYRIG HT © 2015 PEARSON EDU CATION , IN C.

8-30

15


15/03/2021

WhatIsReliability?
§Reliabilityreferstohowdependable orconsistent a
measureisinassessing aparticularcharacteristic.
§Measurementerrorinfluences reliability.
§Measurementerrorcanberandomorsystematic.
§Toevaluateameasure’sreliability,you should consider:
§ Thetypeofmeasure
§ Thetypeofreliabilityestimatereported
§ Thecontextinwhichthemeasurewillbeused

COPYRIG HT © 2015 PEARSON EDU CATION , IN C.


8-31

ReasonsforDifferingScores
onaTestorAssessment
Allofthesefactors,aswellasothers,caninfluence
reliability.Thatiswhytestsorassessment tools
should bestandardizedintheiruse.
Đ Temporaryphysicalor psychologicalstate
Đ Environmentalfactors
Đ Version,orform,ofthemeasure
Đ Differentevaluators

COPYRIG HT â 2015 PEARSON EDU CATION , IN C.

8-32

16


15/03/2021

TypesofErrors
ĐRandomerror:errorthatisnotduetoany
consistentcause
ĐSystematicerror:errorthatoccursbecauseof
consistentandpredictablefactors
ĐDeficiencyerror:errorthatoccurswhenyoufailto
measureimportantaspectsoftheattributeyou
wouldliketomeasure

ĐContaminationerror:errorthatoccurswhenother
factorsunrelatedtowhateverisbeingassessed
affecttheobservedscores
COPYRIG HT â 2015 PEARSON EDU CATION , IN C.

8-33

Deficiency,Contamination,and
Relevance

COPYRIG HT © 2015 PEARSON EDU CATION , IN C.

8-34

17


15/03/2021

InterpretingReliabilityCoefficients

The proper interpretation of reliability coefficients depends on
the type of reliability being assessed and the purpose of the
measure.

COPYRIG HT © 2015 PEARSON EDU CATION , IN C.

8-35

TypesofReliability

§Test-retestreliability reflectstherepeatabilityofscoresover
timeandthestabilityoftheunderlyingconstruct being
measured
§Alternateorparallelformreliability indicateshow
consistentscoresarelikelytobeifapersoncompletestwo
ormoreformsofthesamemeasure
ĐInternalconsistencyreliability indicatestheextenttowhich
itemsonagivenmeasureassessthesameconstruct
ĐInter-raterreliability indicateshowconsistentscoresare
likelytobeiftheresponsesarescoredbytwoor more
ratersusingthesameitem,scale,orinstrument

COPYRIG HT â 2015 PEARSON EDU CATION , IN C.

8-36

18


15/03/2021

StandardErrorofMeasurement
Thestandarderrorofmeasurement (SEM)isthemarginof
errorthatyou shouldexpectinanindividualscorebecause
oftheimperfectreliabilityofthemeasure.Itrepresentsthe
spreadofscoresyoumighthaveobserved hadyou tested
thesamepersonrepeatedly.
Theconfidenceintervalrepresentsthedegreeof
confidencethataperson’s “true”scorelieswithintheir
earnedscoreplusorminustheSEM,givensomelevelof

desiredconfidence.
Thelowerthestandarderror,themoreaccuratethe
measurements.
§ IftheSEMis0,theneachobservedscoreisthatperson’s true score

COPYRIG HT © 2015 PEARSON EDU CATION , IN C.

8-37

WhatIsValidity?
Validityreferstohowwellameasureassessesagiven
constructandthedegreetowhichyoucanmakespecific
conclusionsorpredictions basedon observed scores.

§ Validitycantellyouwhatyoumayconcludeorpredict about
someonebasedonhisorherscoreonameasure,thusindicating the
measure’susefulness.
§ Validity willtellyouhowusefulameasureisforaparticular
situation; reliability willtellyouhowconsistent scoresfromthat
measurewillbe.
§ Youcannotdrawvalidconclusions unlessyouaresurethatthe
measureisreliable.Evenwhenameasureisreliable, itmaynotbe
valid.
Đ Youmightbeabletomeasureapersons shoesizereliablybut itmay
notbeusefulasapredictor ofjobperformance.

Anymeasureusedinstaffingneedstobebothreliableand
validforthesituation.
COPYRIG HT â 2015 PEARSON EDU CATION , IN C.


8-38

19


15/03/2021

ReliabilityandValidity

COPYRIG HT © 2015 PEARSON EDU CATION , IN C.

8-39

WhatIsValidation?
Validationisthecumulativeandongoingprocess of
establishingthejobrelatednessofameasure
Therearethreetypesofvalidationprocesses:

Đ Content-relatedvalidation:Demonstratingthatthecontentofa
measureassessesimportantjob-relatedbehaviors
Đ Construct-relatedvalidation: Demonstratingthatameasure
assessestheconstruct,orcharacteristic,itclaimstomeasure
Đ Criterion-relatedvalidation:Demonstratingthatthereisa
statisticalrelationshipbetweenscoresfromameasureandthe
criterion,usuallysomeaspectofjobsuccess

COPYRIG HT â 2015 PEARSON EDU CATION , IN C.

8-40


20



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×