P. M. Priyadarshan
PLANT
BREEDING:
Classical to
Modern
Tai ngay!!! Ban co the xoa dong chu nay!!! 1699015344479100000
PLANT BREEDING: Classical to Modern
P. M. Priyadarshan
PLANT BREEDING: Classical
to Modern
P. M. Priyadarshan
Erstwhile Deputy Director
Rubber Research Institute of India
Kottayam, Kerala, India
ISBN 978-981-13-7094-6
ISBN 978-981-13-7095-3
/>
(eBook)
# Springer Nature Singapore Pte Ltd. 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.
This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore
This book is dedicated to Nobel Laureate
Dr. Norman E. Borlaug (1914–2009) who, as
a plant breeder, strived benevolently to
eradicate hunger and poverty.
Foreword
Plant breeding is an art and a science. It is an art for selecting suitable phenotype
from variable plant populations. Primitive plant breeders started selecting crop
varieties from the variable wild and semiwild populations. The selection was
based on the judgement and keen eyes of plant breeders. Diverse crop varieties
were selected for 10, 000 years on the basis of empirical observations. The scientific
basis of plant breeding started after the rediscovery of Mendel’s laws of inheritance
during the beginning of the last century. These laws elucidated the mechanism of
segregation and recombination. Through hybridization, multiple genotypes were
produced, and desired phenotypes were selected. Numerous improved varieties
were developed on scientific basis during the last century.
Many plant breeders advanced world agriculture through the development of new
crop varieties. Foremost, among them was Dr. Norman Borlaug who received Nobel
Peace Prize for developing high-yielding varieties of wheat. Similarly, high-yielding
varieties of rice developed at the International Rice Research Institute (IRRI) had a
comparable impact on food production and poverty elimination.
The present world population of 7.5 billion is likely to reach 9 billion by 2050.
This will require 50% more food. This additional food must be produced under
constraints of less land, less water and more importantly under changing climate.
Thus, we need environmentally resilient varieties, with higher productivity and
better nutrition. Fortunately, breakthroughs in cellular and molecular biology have
provided new techniques for crop improvement which will help us meet the
challenges of feeding nine billion people.
I am happy Dr. Priyadarshan has taken the initiative to prepare this text, Plant
Breeding: Classical to Modern. As the title suggests, it discusses the conventional
methods of plant breeding as well as the application of advanced techniques. It has
25 chapters arranged into 5 parts. It starts with a general introduction followed by
plant development aspects, such as modes of crop reproduction and breeding
systems. The next part has an excellent discussion of breeding methods. Specialized
breeding methods, such as hybrid breeding, mutation breeding, polyploid breeding
and distant hybridization, are in the fourth part. The final part has an excellent
discussion of advanced techniques of plant breeding, such as tissue culture, genetic
engineering, molecular breeding and application of genomics.
vii
viii
Foreword
I wish to congratulate Dr. Priyadarshan for his labour of love in assembling
voluminous information in this book. It will be useful for teachers and students of
plant breeding alike.
Davis, CA, USA
Gurdev S. Khush
Preface
Plant breeding is the science that derives new crop varieties to farmers. Based on the
principles of genetics, as laid down classically by Gregor Johann Mendel during
1866, which were “rediscovered” in 1900 by Hugo de Vries, Carl Correns and Erich
von Tschermak, this science has taken the world forward through firmly addressing
hunger, famine and catastrophe. Plant breeding began when agriculture commenced
centuries back, but the real science of plant breeding took shape when Mendel’s
principles of genetics came to light during 1900. The year 2015 commemorated
150 years of Mendelian principles. No nation thrives without agriculture, and plant
breeding is the integral part of that science. The researchers of Tel Aviv, Harvard,
Bar-llan and Haifa Universities say that agriculture began some 23,000 years ago. If
this is true, plant breeding also commenced by then, since farmers must have surely
nurtured best cultivars. Centuries of breeding programmes finally culminated in
Sonora 64 (wheat) and IR 8 (rice) in the 1960s. While Dr. Norman E. Borlaug of
CIMMYT exploited Norin 10 genes to derive semidwarf wheat, in rice, the crosses
between Peta (Indonesia) and Dee-geo-woo-gen (DGWG, China) produced IR
8. Peter Jenning, Henry Beachell and Surajit Kumar De Datta of IRRI spearheaded
this. This saga continues worldwide in producing thousands of varieties in all edible
crops.
The explosive advancements in modern plant breeding enrich traditional breeding
practices accomplished through inculcating various “omics”, advanced computing
and informatics, ending with robotics. The application of systems biology for genetic
fine-tuning of crops meant for varied environments is the emerging new science that
will soon assist plant breeding. The aim of this book is to narrate both conventional
and modern approaches of plant breeding. Principles of Plant Breeding by
R.W. Allard is a classic. However, referring this requires prior knowledge of the
basics of plant breeding. This book is authored with the view to assist BS and MS
students.
The TOC is set to address both conventional and modern means of plant breeding
like history, objective, centres of origin, plant introduction, reproduction, incompatibility, sterility, biometrics, selection, hybridization, breeding both self- and crosspollinated crops, heterosis, induced mutations and polyploidy, distant hybridization,
resistance breeding, breeding for resistance to stresses, GE interactions, tissue
culture, genetic engineering, molecular breeding and genomics. The book extends
ix
x
Preface
to 25 chapters dealing the subject in a comprehensive and perspective manner, and
care has been taken to include almost all topics as required under the curricula of MS
course being taught worldwide.
Striking a balancing chord between narrating fundamentals and inclusion of the
latest advancements is an arduous task. I have strived my best to pay justice. Earnest
efforts were incurred to correct “typos”/errors and possible misstatements. I owe full
responsibility for any remaining errors and pledge to correct them in future editions.
Special thanks to my wife, Mrs. Bindu, and my children, Vineeth and Sandra, for
extending their unflinching support and warm counsel.
The long cherished dream of authoring a book on plant breeding for students is
fulfilled now. This first edition will further be revised during the years to come. I
would appreciate receiving the invaluable comments from the readers, by which I
can improve further editions.
Finally, hearty thanks to Springer for publishing this book.
Thiruvananthapuram, Kerala, India
P. M. Priyadarshan
Acknowledgements
The guidance and suggestions rendered by my teacher, Prof. P.K Gupta, Professor
Emeritus, Chaudhary Charan Singh University, Meerut, India, is gratefully acknowledged. He has been my guide and mentor for all these years.
I place on record a sincere thanks to Prof. M.S. Kang, adjunct professor, Kansas
State University, USA, for reviewing the chapter on GE interactions.
Dr. K. Kalyanaraman, adjunct faculty, National Institute of Technology,
Tiruchirappalli, India, reviewed the chapter on Basic Statistics. I am extremely
indebted to him.
Karen A. Williams, National Germplasm Resources Laboratory, USDA-ARS,
Beltsville, and Joseph Foster, Director, Plant Germplasm Quarantine Program,
USDA-ARS, Beltsville, gave some details of germplasm conservation and utilization. Their help is duly acknowledged.
Dr. Amelia Henry, Dr. Kshirod Jena and Dr. Arvind Kumar of the International
Rice Research Institute, Manila, Philippines, gave me details of drought-tolerant rice
varieties. I am extremely thankful to them.
Dr. Ravi Singh, Head of bread wheat improvement, CIMMYT, and Dr. B.P.M.
Prasanna, Director, CIMMYT’s Global Maize Programme, Nairobi, Kenya, gave me
details of drought tolerance in wheat and maize, respectively. My sincere thanks are
due to them.
Prof. Lawrence B. Smart, School of Integrative Plant Science, Cornell University,
and Prof. Jeff J. Doyle, Professor and chair, Plant Breeding & Genetics, Cornell
University, helped me to reconstruct the Table of Contents with the details of the
curricula on plant breeding being followed at Cornell University. My sincere thanks
to them.
Prof. Dionysia A. Fasoula of the Department of Plant Breeding, Agricultural
Research Institute, Nicosia, Cyprus, reviewed the honeycomb design narration. I am
extremely thankful to him for this gesture. My Special thanks with indebtedness to
Dr. Gurdev S. Khush for providing the foreword to this book.
xi
Contents
Part I
Generalia
1
Introduction to Plant Breeding . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1
Plant Domestication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2
Plant Breeding: Pre-Mendelian . . . . . . . . . . . . . . . . . . . . . . . . .
1.3
Plant Breeding: Post-Mendelian . . . . . . . . . . . . . . . . . . . . . . . .
1.4
Food Scarcity, Norman Borlaug and Green Revolution . . . . . . .
1.4.1
Semi-dwarf Varieties of Wheat and Rice . . . . . . . . . . .
1.5
Facets of Plant Breeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.6
Future Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
14
16
17
20
20
22
28
32
2
Objectives, Activities and Centres of Origin . . . . . . . . . . . . . . . . .
2.1
Centres of Origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.1
Vavilov’s Original Concepts . . . . . . . . . . . . . . . . . . .
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
35
38
39
47
3
Germplasm Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1
In Vitro Germplasm Preservation . . . . . . . . . . . . . . . . . . . . . . .
3.2
Germplasm Regeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3
Characterization, Evaluation, Documentation and Distribution . .
3.3.1
Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.2
Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.3
Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.4
Distribution of Germplasm . . . . . . . . . . . . . . . . . . . . .
3.4
FAO and Plant Genetic Resources . . . . . . . . . . . . . . . . . . . . . .
3.4.1
FAO Commission on Plant Genetic Resources . . . . . . .
3.5
Germplasm: International vs. Indian Scenario . . . . . . . . . . . . . .
3.6
Plant Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6.1
Historical Perspective . . . . . . . . . . . . . . . . . . . . . . . . .
3.7
Plant Introduction: The International Scenario . . . . . . . . . . . . . .
3.7.1
Import Regulations . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7.2
Plant Germplasm Import and Export . . . . . . . . . . . . . .
49
50
52
53
53
55
57
60
60
61
62
64
64
65
65
66
xiii
xiv
Contents
3.8
Plant Introduction in India . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.9
Conservation of Endangered Species/Crop Varieties . . . . . . . . .
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Part II
68
72
73
Developmental Aspects
4
Modes of Reproduction and Apomixis . . . . . . . . . . . . . . . . . . . . . . .
4.1
Sexual Reproduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2
Vegetative (Asexual) Reproduction . . . . . . . . . . . . . . . . . . . . .
4.3
Apomixis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.1
Gametophytic Apomixis . . . . . . . . . . . . . . . . . . . . . . .
4.3.2
Sporophytic Apomixis . . . . . . . . . . . . . . . . . . . . . . . .
4.3.3
Genetics of Apomixis . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.4
Apomixis in Agriculture . . . . . . . . . . . . . . . . . . . . . . .
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
77
77
81
83
85
85
85
87
88
5
Self-Incompatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.1
Mechanism of Self-Incompatibility . . . . . . . . . . . . . . . . . . . . . . 93
5.1.1
The Pollen-Stigma-Style-Ovule Interactions . . . . . . . . . 98
5.1.2
Significance of Self-Incompatibility . . . . . . . . . . . . . . . 100
5.1.3
Methods to Overcome Self-Incompatibility . . . . . . . . . 101
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6
Male Sterility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1
Male Sterility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1.1
Genetic Male Sterility . . . . . . . . . . . . . . . . . . . . . . . . .
6.1.2
Cytoplasmic Male Sterility . . . . . . . . . . . . . . . . . . . . .
6.1.3
Genes for CMS and Restoration of Fertility
(Cytoplasmic-Genetic Male Sterility) . . . . . . . . . . . . . .
6.1.4
Mechanisms of Restoration . . . . . . . . . . . . . . . . . . . . .
6.2
Engineering Male Sterility . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.1
Dominant Nuclear Male Sterility (Pollen Abortion
or Barnase/Barstar System) . . . . . . . . . . . . . . . . . . . .
6.2.2
Male Sterility Through Hormonal Engineering . . . . . . .
6.2.3
Pollen Self-Destructive Engineered Male Sterility . . . . .
6.2.4
Male Sterility Using Pathogenesis-Related Protein
Genes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.5
RNAi and Male Sterility . . . . . . . . . . . . . . . . . . . . . . .
6.2.6
Mitochondrial Rearrangements for CMS . . . . . . . . . . .
6.2.7
Chloroplast Genome Engineering for CMS . . . . . . . . .
6.3
Male Sterility in Plant Breeding . . . . . . . . . . . . . . . . . . . . . . . .
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
105
109
111
111
114
117
117
118
119
120
120
121
122
124
125
129
Contents
7
Basic Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1
Common Biometrical Terms . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1.1
Genetic Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1.2
Measures of Variation . . . . . . . . . . . . . . . . . . . . . . . .
7.1.3
Coefficient of Variation . . . . . . . . . . . . . . . . . . . . . . .
7.1.4
Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1.5
Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1.6
Statistical Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . .
7.1.7
Standard Error of the Mean . . . . . . . . . . . . . . . . . . . . .
7.2
Correlation Coefficient (r) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2.1
Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . .
7.3
Heritability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.3.1
Heritability and the Partitioning of Total Variance . . . .
7.4
Principles of Experimental Design . . . . . . . . . . . . . . . . . . . . . .
7.4.1
Randomization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.4.2
Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.4.3
Local Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.4.4
Completely Randomized Design (CRD) . . . . . . . . . . . .
7.4.5
Randomized Complete Block Design (RCBD) . . . . . . .
7.4.6
Latin Square Design . . . . . . . . . . . . . . . . . . . . . . . . . .
7.5
Tests of Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.5.1
Chi-Square Test (for Goodness of Fit) . . . . . . . . . . . . .
7.5.2
t-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.6
Analysis of Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.7
Multivariate Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.7.1
Cluster Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.7.2
Principal Component Analysis (PCA) and Principal
Coordinate Analysis (PCoA) . . . . . . . . . . . . . . . . . . . .
7.7.3
Multidimensional Scaling . . . . . . . . . . . . . . . . . . . . . .
7.7.4
Path Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.8
Hardy-Weinberg Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . .
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Part III
8
xv
131
132
132
133
134
134
134
136
138
139
140
142
143
144
144
145
145
146
149
153
156
156
157
158
160
161
162
164
164
167
169
Methods of Breeding
Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.1
History of Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2
Genetic Effects of Selection . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.3
Systems of Selection and Gene Action . . . . . . . . . . . . . . . . . . .
8.3.1
Selection in Favour of and Against Allele . . . . . . . . . .
8.3.2
Selection for Genes with Epistatic Effects . . . . . . . . . .
8.3.3
Selection for a Single Quantitative Trait . . . . . . . . . . . .
8.3.4
Selection on the Basis of Individuality . . . . . . . . . . . . .
8.3.5
Selection on the Basis of Pedigrees . . . . . . . . . . . . . . .
173
173
174
174
175
175
175
176
177
xvi
Contents
8.3.6
Selection on the Basis of Progeny Tests . . . . . . . . . .
8.3.7
Selection for Specific Combining Ability . . . . . . . . .
8.4
Selection of Superior Strains . . . . . . . . . . . . . . . . . . . . . . . .
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
178
178
179
183
9
Hybridization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.1
History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.2
Procedure of Hybridization . . . . . . . . . . . . . . . . . . . . . . . . . .
9.2.1
Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.2.2
Distant Hybridization . . . . . . . . . . . . . . . . . . . . . . . .
9.2.3
Choice and Evaluation of Parents . . . . . . . . . . . . . . .
9.3
Consequences of Hybridization . . . . . . . . . . . . . . . . . . . . . . .
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
185
185
188
189
193
194
200
202
10
Backcross Breeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.1 Procedure of Backcross . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.2 Recovery Rate of RP Genes . . . . . . . . . . . . . . . . . . . . . . . . . .
10.3 Molecular Marker-Assisted Backcrossing . . . . . . . . . . . . . . . .
10.3.1 Recurrent Selection in Backcross . . . . . . . . . . . . . . . .
10.4 Transfer of Quantitative Characters . . . . . . . . . . . . . . . . . . . .
10.4.1 AB-QTL in Self-Pollinated Crops . . . . . . . . . . . . . . .
10.4.2 AB-QTL in Cross-Pollinated Crops . . . . . . . . . . . . . .
10.4.3 Merits and Demerits of AB-QTL Method . . . . . . . . . .
10.4.4 Marker-Assisted Gene Pyramiding . . . . . . . . . . . . . .
10.4.5 Modifications of Backcross Method . . . . . . . . . . . . . .
10.4.6 Merits and Demerits of Backcross Breeding . . . . . . . .
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
203
204
208
210
214
214
215
215
216
217
217
218
220
11
Breeding Self-Pollinated Crops . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.1 Self-Pollinated Crops: Methods . . . . . . . . . . . . . . . . . . . . . . .
11.1.1 Mass Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.1.2 Pure-Line Selection . . . . . . . . . . . . . . . . . . . . . . . . .
11.1.3 Hybridization and Pedigree Selection . . . . . . . . . . . . .
11.2 Special Backcross Procedures . . . . . . . . . . . . . . . . . . . . . . . .
11.3 Multiline Breeding and Cultivar Blends . . . . . . . . . . . . . . . . .
11.4 Breeding Composites and Recurrent Selection . . . . . . . . . . . .
11.4.1 Hybrid Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
223
225
226
227
230
238
238
238
239
241
12
Breeding Cross-Pollinated Crops . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.1 Selection in Cross-Pollinated Crops . . . . . . . . . . . . . . . . . . . . .
12.1.1 Mass Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.1.2 Recurrent Selection . . . . . . . . . . . . . . . . . . . . . . . . . .
243
244
245
245
Contents
12.2
Intra-population Improvement Methods . . . . . . . . . . . . . . . . .
12.2.1 Individual Plant Selection Methods . . . . . . . . . . . . . .
12.2.2 Family Selection Methods . . . . . . . . . . . . . . . . . . . . .
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xvii
.
.
.
.
248
248
249
255
13
Recombinant Inbred Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.1 Inbred Line Development in Cross-Pollinated Crops . . . . . . . . .
13.2 Methods Adopted for RILs . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.2.1 Selection of Parent Strains . . . . . . . . . . . . . . . . . . . . .
13.2.2 Selection of Construction Design . . . . . . . . . . . . . . . . .
13.2.3 Parent Cross and F1 Cross . . . . . . . . . . . . . . . . . . . . . .
13.2.4 Advanced Intercross . . . . . . . . . . . . . . . . . . . . . . . . . .
13.2.5 Inbreeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.3 Doubled Haploid Breeding . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.4 Reverse Breeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.4.1 Marker-Assisted Reverse Breeding (MARB) . . . . . . . .
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
257
257
259
259
259
260
260
260
261
263
266
268
14
Quantitative Genetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.1 Principles of Biometrical Genetics . . . . . . . . . . . . . . . . . . . . . .
14.1.1 Multiple-Factor Hypothesis (Nilsson-Ehle) . . . . . . . . . .
14.2 Models, Assumptions and Predictions . . . . . . . . . . . . . . . . . . . .
14.2.1 Partition of Variance Components . . . . . . . . . . . . . . . .
14.2.2 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.2.3 The Infinitesimal Model . . . . . . . . . . . . . . . . . . . . . . .
14.3 Types of Gene Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.3.1 Quantifying Gene Action . . . . . . . . . . . . . . . . . . . . . .
14.3.2 Population Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.3.3 Phenotypic Variance . . . . . . . . . . . . . . . . . . . . . . . . . .
14.3.4 Breeding Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.3.5 Heritability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.3.6 Estimating Additive Variance and Heritability . . . . . . .
14.4 Models for Combining Ability Analysis . . . . . . . . . . . . . . . . . .
14.4.1 Biparental Progenies (BIP) . . . . . . . . . . . . . . . . . . . . .
14.4.2 Polycross . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.4.3 Topcross . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.4.4 North Carolina Designs . . . . . . . . . . . . . . . . . . . . . . .
14.4.5 Diallels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.5 Multiple Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . .
14.5.1 Regression Models . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.6 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.6.1 Static Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.6.2 Dynamic Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.6.3 Regression Approaches . . . . . . . . . . . . . . . . . . . . . . . .
14.7 Genetic Architecture of Quantitative Traits . . . . . . . . . . . . . . . .
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
269
269
269
274
274
275
275
275
277
278
279
282
282
284
286
286
287
288
288
291
291
292
293
293
294
295
296
298
xviii
Contents
Part IV
Specialized Breeding
15
Heterosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.1 Historical Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.2 Types of Heterosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.2.1 Dominance Hypothesis . . . . . . . . . . . . . . . . . . . . . . . .
15.2.2 Overdominance Hypothesis . . . . . . . . . . . . . . . . . . . . .
15.2.3 Heterosis and Epistasis . . . . . . . . . . . . . . . . . . . . . . . .
15.2.4 Epigenetic Component to Heterosis . . . . . . . . . . . . . . .
15.3 Physiological Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.4 Molecular Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.5 Inbreeding Depression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.6 Prediction of Heterosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.6.1 Phenotypic Data-Based Prediction of Heterosis . . . . . .
15.6.2 Molecular Marker-Based Prediction of Heterosis . . . . .
15.7 Achievements by Heterosis . . . . . . . . . . . . . . . . . . . . . . . . . . .
15.7.1 Heterosis Breeding in Wheat . . . . . . . . . . . . . . . . . . . .
15.7.2 Heterosis Breeding in Rice . . . . . . . . . . . . . . . . . . . . .
15.7.3 Heterosis Breeding in Maize . . . . . . . . . . . . . . . . . . . .
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
301
302
304
305
305
306
307
309
310
312
315
315
316
318
318
322
326
328
16
Induced Mutations and Polyploidy Breeding . . . . . . . . . . . . . . . . . .
16.1 Mutation Breeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.1.2 Mutagenic Agents . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.1.3 Physical Mutagenesis . . . . . . . . . . . . . . . . . . . . . . . . .
16.1.4 Chemical Mutagenesis . . . . . . . . . . . . . . . . . . . . . . . .
16.1.5 Types of Mutations . . . . . . . . . . . . . . . . . . . . . . . . . .
16.1.6 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . .
16.1.7 Mutation Breeding Strategy . . . . . . . . . . . . . . . . . . . .
16.1.8 In Vitro Mutagenesis . . . . . . . . . . . . . . . . . . . . . . . . .
16.1.9 Gamma Gardens or Atomic Gardens . . . . . . . . . . . . . .
16.2 Factors Affecting Radiation Effects . . . . . . . . . . . . . . . . . . . . .
16.2.1 Direct and Indirect Effects . . . . . . . . . . . . . . . . . . . . .
16.2.2 Biological Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.3 Molecular Mutation Breeding . . . . . . . . . . . . . . . . . . . . . . . . .
16.3.1 TILLING and EcoTILLING . . . . . . . . . . . . . . . . . . . .
16.3.2 Site-Directed Mutagenesis . . . . . . . . . . . . . . . . . . . . . .
16.3.3 MutMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.4 The FAO/IAEA Joint Venture for Nuclear Agriculture . . . . . . .
16.4.1 Mutation Breeding in Different Countries . . . . . . . . . .
16.5 Polyploidy Breeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16.5.1 Types of Changes in Chromosome Number . . . . . . . . .
16.5.2 Methods for Inducing Polyploidy . . . . . . . . . . . . . . . .
329
329
330
330
332
335
336
338
339
341
341
344
344
345
346
347
349
350
352
354
358
359
364
Contents
xix
16.5.3 Molecular Consequences of Polyploidy . . . . . . . . . . . . 366
16.5.4 Molecular tools for Exploring Polyploidy Genomes . . . 367
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
17
Distant Hybridization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17.1 Barriers in Production of Distant Hybrids . . . . . . . . . . . . . . . .
17.1.1 Pre-zygotic Incompatibility . . . . . . . . . . . . . . . . . . . .
17.1.2 Post-zygotic Incompatibility . . . . . . . . . . . . . . . . . . .
17.1.3 Failure of Zygote Formation and Development . . . . . .
17.1.4 Embryonic Incompatibility and Embryo Rescue . . . . .
17.1.5 Transgressive Segregation . . . . . . . . . . . . . . . . . . . . .
17.2 Nuclear-Cytoplasmic Interactions . . . . . . . . . . . . . . . . . . . . . .
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
371
373
373
374
374
375
376
377
378
18
Host Plant Resistance Breeding . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.1 Concepts in Insect and Pathogen Resistance . . . . . . . . . . . . . .
18.1.1 Host Defence Responses to Pathogen Invasions . . . . .
18.1.2 Vertical and Horizontal Resistance . . . . . . . . . . . . . .
18.2 Biochemical and Molecular Mechanisms . . . . . . . . . . . . . . . .
18.2.1 Systemic Acquired Resistance (SAR) . . . . . . . . . . . .
18.2.2 Induced Systemic Resistance (ISR) . . . . . . . . . . . . . .
18.3 Qualitative and Quantitative Resistance . . . . . . . . . . . . . . . . .
18.3.1 Genes for Qualitative Resistance . . . . . . . . . . . . . . . .
18.3.2 Genes for Quantitative Resistance . . . . . . . . . . . . . . .
18.4 Pathogen Detection and Response . . . . . . . . . . . . . . . . . . . . .
18.5 Signal Transduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18.5.1 Resistance Through Multiple Signalling Mechanisms .
18.6 Classical Breeding Strategies . . . . . . . . . . . . . . . . . . . . . . . . .
18.6.1 Backcross Breeding . . . . . . . . . . . . . . . . . . . . . . . . .
18.6.2 Recurrent Selection . . . . . . . . . . . . . . . . . . . . . . . . .
18.6.3 Multi-stage Selection . . . . . . . . . . . . . . . . . . . . . . . .
18.7 Marker-Assisted Breeding Strategies . . . . . . . . . . . . . . . . . . .
18.7.1 Monogenic vs. QTLs . . . . . . . . . . . . . . . . . . . . . . . .
18.7.2 Marker-Assisted Backcross Breeding (MABC) . . . . . .
18.8 Modern Approaches to Biotic Stress Tolerance . . . . . . . . . . . .
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
379
380
385
385
387
387
388
390
392
393
395
397
398
399
399
400
401
402
403
405
408
412
19
Breeding for Abiotic Stress Adaptation . . . . . . . . . . . . . . . . . . . . .
19.1 Types of Abiotic Stresses . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.1.1 Drought Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . .
19.1.2 Salinity Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . .
19.1.3 Temperature Tolerance . . . . . . . . . . . . . . . . . . . . . . .
19.1.4 Macro- and Microelements . . . . . . . . . . . . . . . . . . . .
19.2 Physiological and Biochemical Responses . . . . . . . . . . . . . . .
19.2.1 Physiological Responses . . . . . . . . . . . . . . . . . . . . . .
19.2.2 Biochemical Responses . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
413
414
415
416
416
417
418
419
421
xx
20
Contents
19.3
Breeding for Abiotic Stresses . . . . . . . . . . . . . . . . . . . . . . . . . .
19.3.1 Breeding for Drought Tolerance/WUE . . . . . . . . . . . . .
19.3.2 Photosynthesis Under Drought Stress . . . . . . . . . . . . .
19.3.3 Breeding for Heat Tolerance . . . . . . . . . . . . . . . . . . . .
19.3.4 Drought Versus Heat Tolerance . . . . . . . . . . . . . . . . . .
19.3.5 Salinity Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.4 MAB for Abiotic Stress in Major Crops . . . . . . . . . . . . . . . . . .
19.4.1 Rice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.4.2 Wheat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.4.3 Maize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.5 “Omics” and Stress Adaptation . . . . . . . . . . . . . . . . . . . . . . . .
19.5.1 Comparative Genomics Tools . . . . . . . . . . . . . . . . . . .
19.5.2 Prote“omics” to Unravel Stress Tolerance . . . . . . . . . .
19.5.3 Metabol“omics” . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.5.4 Phen“omics”: For Dissection of Stress Tolerance . . . . .
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
422
423
425
428
429
430
432
440
441
442
443
443
445
445
447
455
Genotype-by-Environment Interactions . . . . . . . . . . . . . . . . . . . . . .
20.1 Statistical Models for Assessing G E Interactions . . . . . . . . .
20.1.1 Genotypes and Environments . . . . . . . . . . . . . . . . . . .
20.1.2 Basic ANOVA and Regression Models . . . . . . . . . . . .
20.1.3 Multiplicative Models . . . . . . . . . . . . . . . . . . . . . . . . .
20.1.4 AMMI Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20.1.5 Pattern Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20.1.6 GGE Biplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20.2 Measures of Yield Stability . . . . . . . . . . . . . . . . . . . . . . . . . . .
20.2.1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
457
458
460
462
463
464
467
468
469
471
471
Part V
Breeding for New Millennium
21
Tissue Culture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21.2 Components of Tissue Culture Media . . . . . . . . . . . . . . . . . . . .
21.3 Preparing the Plant Tissue Culture Medium . . . . . . . . . . . . . . .
21.4 Transfer of Plant Material to Tissue Culture Medium . . . . . . . . .
21.5 Micropropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21.6 Protoplast Culture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21.7 Anther Culture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21.8 Somatic Embryogenesis and Synthetic Seeds . . . . . . . . . . . . . .
21.9 Plant Tissue Culture Terminology . . . . . . . . . . . . . . . . . . . . . .
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
475
475
477
482
483
483
484
486
486
488
491
22
Genetic Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
22.1 Restriction Endonucleases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
22.2 Techniques for Producing Transgenic Plants . . . . . . . . . . . . . . . 496
Contents
xxi
22.2.1 Engineering Insect Resistance . . . . . . . . . . . . . . . . . .
22.2.2 Engineering Herbicide Tolerance . . . . . . . . . . . . . . . .
22.3 Site-Directed Nucleases . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22.3.1 What and Why CRISPR? . . . . . . . . . . . . . . . . . . . . .
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
497
498
500
502
507
23
Molecular Breeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23.1 Genetic Markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23.1.1 Classical Markers . . . . . . . . . . . . . . . . . . . . . . . . . . .
23.1.2 DNA Markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23.1.3 Summary of Major Classes of Genetic Markers . . . . .
23.1.4 Prerequisites for Molecular Breeding . . . . . . . . . . . . .
23.2 Activities of Marker-Assisted Breeding . . . . . . . . . . . . . . . . .
23.2.1 What Is Mapping? . . . . . . . . . . . . . . . . . . . . . . . . . .
23.3 MAS for Qualitative Traits . . . . . . . . . . . . . . . . . . . . . . . . . .
23.4 MAS for Quantitative Traits . . . . . . . . . . . . . . . . . . . . . . . . .
23.4.1 QTL Detection (Statistical) . . . . . . . . . . . . . . . . . . . .
23.5 Next-Gen Molecular Breeding . . . . . . . . . . . . . . . . . . . . . . . .
23.5.1 Next-Generation Sequencing (NGS) . . . . . . . . . . . . .
23.5.2 Genotyping-by-Sequencing (GBS) . . . . . . . . . . . . . .
23.5.3 Genetic Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23.5.4 Physical Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
509
515
515
516
523
525
525
526
528
529
531
533
534
534
537
538
539
24
Genomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24.1 Genetic Structure of Plant Genomes . . . . . . . . . . . . . . . . . . . .
24.1.1 Nuclear Genomes and Their Size . . . . . . . . . . . . . . . .
24.1.2 Chemical and Physical Composition of Plant DNA . . .
24.1.3 The Packaging of the Genome . . . . . . . . . . . . . . . . .
24.1.4 The Genomic DNA Sequence . . . . . . . . . . . . . . . . . .
24.1.5 Model Plant Species . . . . . . . . . . . . . . . . . . . . . . . . .
24.1.6 Genome Co-linearity/Genome Evolution . . . . . . . . . .
24.1.7 Whole Genome Sequencing . . . . . . . . . . . . . . . . . . .
24.1.8 Transposable Elements . . . . . . . . . . . . . . . . . . . . . . .
24.1.9 DNA Microarrays (DNA Chip or Biochip) . . . . . . . . .
24.2 Genomics-Assisted Breeding . . . . . . . . . . . . . . . . . . . . . . . . .
24.2.1 Genome Sequencing and Sequence-Based Markers . . .
24.2.2 High-Throughput Phenotyping . . . . . . . . . . . . . . . . .
24.2.3 Marker-Trait Association for Genomics-Assisted
Breeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24.2.4 From Genotype to Phenotype . . . . . . . . . . . . . . . . . .
24.2.5 Post-transcriptional Gene Silencing (PTGS) . . . . . . . .
24.3 The New Systems Biology . . . . . . . . . . . . . . . . . . . . . . . . . .
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
541
543
544
546
546
547
547
548
548
548
549
550
551
552
.
.
.
.
.
553
554
554
557
560
xxii
25
Contents
Maintenance Breeding and Variety Release . . . . . . . . . . . . . . . . .
25.1 Breeder’s Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
25.1.1 Designing Field Trials . . . . . . . . . . . . . . . . . . . . . . .
25.1.2 Crop Registration . . . . . . . . . . . . . . . . . . . . . . . . . . .
25.2 Cultivar/Variety Maintenance . . . . . . . . . . . . . . . . . . . . . . . .
25.2.1 Maintenance of a Cultivar . . . . . . . . . . . . . . . . . . . . .
25.3 DUS Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
25.3.1 Test Guidelines and Requirements . . . . . . . . . . . . . . .
25.3.2 Types of Expression of Characteristics . . . . . . . . . . . .
25.3.3 DUS Descriptors for Major Crops . . . . . . . . . . . . . . .
25.4 Generation System of Seed Multiplication . . . . . . . . . . . . . . .
Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
561
561
562
562
563
563
566
567
567
568
569
570
About the Author
Dr. P. M. Priyadarshan is a prominent Hevea rubber breeder. He began his
research career by breeding triticale and wheat. During the 1980s, he focused on
the in vitro culture of spices. He joined the Rubber Research Institute of India
(Rubber Board, Ministry of Commerce, Govt. of India) as a plant breeder in 1990
and specialized in breeding Hevea rubber for sub-optimal environments. In 2009, he
became the Institute’s Deputy Director, and managed its Central Experiment Station
until 2016. As a scientist, he has been involved in breeding cereals, spices and Hevea
rubber for the past 32 years. During that time, he has published several research
papers and chapters in journals and books of international repute. He has authored
articles for several important journals, e.g. Advances in Agronomy, Advances in
Genetics and Plant Breeding Reviews, and has edited books such as Breeding
Plantation Tree Crops, Breeding Major Food Staples and the Genomics of Tree
Crops, as well as a book on the biology of Hevea rubber.
xxiii
Part I
Generalia
1
Introduction to Plant Breeding
Keywords
Scientific basis of plant breeding · World food scenario · Contributions of
conventional plant breeding · International Research Centres · Plant
domestication · Pre-Mendelian · Post-Mendelian · Norman Borlaug and green
revolution · Semi-dwarf varieties of wheat and rice · Facets of plant breeding ·
Omics · Genetic diversity · Germplasm grouping · Quantitative variation ·
Mapping traits · Genotype-by-environment interactions · Phenotyping ·
Phenomics · Future challenges
David Allen Sleper and John Milton Poehlman gave the definition for plant breeding
as: “Plant Breeding is the art and science of improving heredity of plants for the
benefit of humankind”. Above all others, this is the best-suited definition for plant
breeding. There are several others as:
Plant breeding is the art and science of changing the genetics of plants in order to produce
desired characteristic.
Plant breeding, science of altering the genetic pattern of plants in order to increase their
value.
The application of genetic analysis to development of plant lines better suited for human
purposes.
By definition, plant breeding is the purposeful manipulation of certain species of plants in
order to create desired varieties to achieve specific purposes. The manipulation may be
done in several ways.
The application of genetic analysis to development of plant lines better suited for human
purposes.
# Springer Nature Singapore Pte Ltd. 2019
P. M. Priyadarshan, PLANT BREEDING: Classical to Modern,
/>
3
4
1
Introduction to Plant Breeding
Man started using selected plant species some 10,000 years ago for his day-to-day
needs and knowingly or unknowingly exercised the option of domesticating the
plants. This exercise is known as plant domestication. Plant domestication is the
earliest way of plant breeding. Since then, plant breeding experienced explosive
advancements in serving man with newer sources of food, fibre, feed and fuel. All
our food crops were derived from domesticated plants (Table 1.1). Among the more
than 300,000 plant species under existence now, fewer than 200 are being commercially exploited, and only 3 of them – rice, wheat and maize – contribute to calories
and proteins consumed by human.
A plant raised through intentional human activity is called a cultigen. Ancestors
of cultigen are normally not known. A cultivated crop species evolved from wild
populations as a result of selection by farmers is a landrace, suited to a particular
region or environment. An example is the landraces of rice, Oryza sativa subspecies
indica, which was developed in South Asia, and Oryza sativa subspecies japonica,
which was developed in China. The International Treaty on Plant Genetic Resources
for Food and Agriculture (2001) says that a variety is a “plant grouping within a
single botanical taxon of the lowest rank, defined by the reproducible expression of
its distinguishing and other genetic characteristics”.
The breeding methods can be streamlined into three categories:
(a) Selection based on observed natural variants
(b) Controlled mating of parents and selection of recombinants
(c) Selection of marker profiles, using molecular tools
The last category is the non-conventional way of breeding plants. It is a fact that
relying upon only traditional breeding methods could lead to narrowing of gene pool
that ultimately makes the species vulnerable to biotic and abiotic stresses.
Non-conventional techniques will lead to more desirable variation. A collection of
all such variants (conventional and non-conventional) of a given species is known as
germplasm.
Scientific Basis of Plant Breeding On the advent of the twentieth century, the
principles put forth by Darwin and Mendel established the scientific basis for plant
breeding and genetics (see Sections 1.2 and 1.3). Similarly, the twenty-first-century
crop improvement is revolutionized by molecular plant breeding that integrates
molecular marker applications and genomic research with conventional plant breeding practices. A journey through various milestones of genetics from 9000 BC to till
date has taken the humankind to explosive advancements of plant genetics and
breeding (Table 1.2). DNA, the seed of life, was first identified and isolated by
Friedrich Miescher in 1869 (which Miescher called nuclein), and the double helix
structure of DNA was first discovered by James Dewey Watson and Francis Harry
Compton Crick in 1953. Since then, the science of genetics has taken unstoppable
journey aiding the basic principles of plant breeding on which crop improvement is
totally based upon.
1
Introduction to Plant Breeding
5
Table 1.1 Landraces and their domestication
Plant
Peas
Barley
Chickpea
Rice
Potatoes
Beans
Maize
Bread wheat
Cassava
Date palm
Avocado
Grapevine
Cotton
Bananas
Beans
Chilli peppers
Amaranth
Watermelon
Olives
Pomegranate
Garlic
Soybean
Cocoa
Squash (Cucurbita pepo)
Sunflower
Rice
Sweet potato
Pearl millet
Sesame
Sorghum
Sunflower
Coconut
Rice
Tobacco
Eggplant
Where domesticated
Near East
Near East
Anatolia
Asia
Andes Mountains
South America
Central America
Near East
South America
Southwest Asia
Central America
Southwest Asia
Southwest Asia
Island Southeast Asia
Central America
South America
Central America
Near East
Near East
Iran
Central Asia
East Asia
South America
North America
Central America
India
Peru
Africa
Indian subcontinent
Africa
North America
Southeast Asia
Africa
South America
Asia
Date
9000 BC
8500 BC
8500 BC
8000 BC
8000 BC
8000 BC
7000 BC
6000 BC
6000 BC
5000 BC
5000 BC
5000 BC
5000 BC
5000 BC
5000 BC
4000 BC
4000 BC
4000 BC
4000 BC
3500 BC
3500 BC
3000 BC
3000 BC
3000 BC
2600 BC
2500 BC
2500 BC
2500 BC
2500 BC
2000 BC
2000 BC
1500 BC
1500 BC
1000 BC
First century BC
In addition to classical breeding, plant breeding in the recent years has achieved
commendable strides integrating various tools of biotechnology. Marker-assisted
selection or marker-aided selection (MAS) is a process whereby a marker (morphological, biochemical or one based on DNA/RNA variation) is used for indirect
selection of a genetic determinant or determinants of a trait of interest
(i.e. productivity, disease resistance, abiotic stress tolerance and/or quality). Genetic