MINISTRYOFEDUCATION ANDTRAINING
QUYNHONUNIVERSITY
TRUONGDUYHUONG
SYNTHESISANDMODIFICATIONOFMS2(M=
Mo,W)WITHg-C3N4FORPHOTOCATALYSIS
MAJOR: PHYSICAL AND THEORETICAL
CHEMISTRYCODENo.: 9440119
DOCTORALTHESISINCHEMISTRY
BINHDINH-2021
TRUONGDUYHUONG
SYNTHESISANDMODIFICATIONOFMS2(M=
Mo,W)WITHg-C3N4FORPHOTOCATALYSIS
MAJOR: PHYSICAL AND THEORETICAL
CHEMISTRYCODENO.: 9440119
Reviewer 1:Dr. Nguyen Van
ThangReviewer 2:Assoc. Prof. Nguyen Duc
CuongReviewer3:Assoc.Prof.TranThiVanThi
Supervisor:
Assoc.Prof.VOVIEN–QuyNhonUniversity
BINHDINH–2021
DECLARATION
This thesis has been completed at Quy Nhon University, in
cooperationwithKULeuven,underthesupervisorofAssoc.Prof.VoVien.Iherebyassuret
hatthisresearchprojectismine.Alltheresultsarehonest,havebeenapprovedbycoauthorsandhave not beenreleasedbyanyoneelsebefore.
Supervisor
Author
Assoc.Prof.VOVIEN
TRUONGDUYHUONG
ACKNOWLEDGEMENTS
Firstly, from my heart, I would like to express my gratitude to both
ofmy promoters, Assoc. Prof. Vo Vien and Prof. M. Enis Leblebici not only
fortheir enthusiastic guidance, expertise and invaluable time, but also for
theirencouragement when I encountered difficulties during the time of doing
theresearch. Furthermore, from the beginning to the very end of my study
time
inKULeuven,Belgium,Icould
saythat
without
theconstant
supportfromProf.
M. Enis Leblebici my study would have not accomplished any progress as
Ihave today. Meanwhile, the belief that I have ability to do the research
fromAssoc. Prof. Vo Vien made me more energetic to overcome the tough
time onmyscientificpathway.
Another professor who inspired me a lot and that also the one always
isin my heart, Prof. Tom Van Gerven. He always gave me a warm welcome
anda
lovely
smile
that
made
me
feel
more
confident
and
relax
when
we
hadunforgetablegroupmeetingstogetheralongwithProf.M.EnisLeblebici.Iamnot
exaggerated
when
say
that
the
meeting
time
with
both
of
you
has
been
themostbeautifulmomentsthatIhaveexperiencedinmylife.Eveninthetimeofwriting this
acknowledgement,Istillfeelthathappytimeinmymind.So,itisnoteasytoexpressthatfeelinginwords,especiallyinEnglish,I
justtrytosayhowkindof youare.
Having the opportunity to study in Belgium, a heart of Europe how
canIforgetthefinancialsupportfromVLIR-UOS,BelgiumwithTEAMprojectofcode
ZEIN2016PR431
and
title
“Reinforcing
the
capabilities
of
Quy
NhonUniversity-
Vietnaminsolvinglocalproblemsbybuildingupadoctoral
trainingprogram”.Withoutthisprojectalongwiththeeffortfromalltheprojectmaker
members,
including
Prof.
Do
Ngoc
My
(Rector
of
QNU),
Prof.
NguyenTienTrung,Prof.VuThiNgan,Prof.VoVien,especiallyfromProf.MinhThoNguyen,m
ydreamcouldnotcome true.
Ialsowouldliketothankmyfriendswhostoodwithmeinanycircumstances. Those
from
Vietnam
like
Ms.
Vu
Thi
Lien
Huong,
rector
of
LeKhietHighSchoolfortheGifted,Mr.LeVanTrungchemistrygroupleaderofthe school and
alllovelycolleagues.ToPhamHoangQuan,oneofmyclosestfriendswhotaughtmesomebasicexperimentalskillsfromthe
beginning, thefact that you suddenly passed away made me could not believe, I
promise totake care of your little daughter as much as I can within my ability,
Mr. TranDuc Trung for your help in heating my samples at Dung Quat
Technology andEngineeringandencouragingmeintimewhenIhadtroubles,mystudentsQuoc Nhat and
Quang Tan for your effort to do the experiments in the schoollaboratory in
the early days for the first Vsef that we achieved the best prize,the second
group with Tuan Anh and Nguyen Khang, the third group with VuQuan and
Anh Kiet, Mr. Dinh Trong Nghia and Le Van Phuong for your timein coffee
shops whenever I need someone to talk and those who I worked
andmetinKULeuvensuchasLiefintheAdmissionOffice,AlenaintheSecretaryOffice,C
hristineforyourinstructionsinthelabandcharacterizingmysamples,Michelle for your ordering
chemicals, Ruijun for some wonderful parties,watching a football match of OH Leuven and
XPS analysis, Thomas and Glenforyoursupportinthelab,Mohammedforyourniceconversation,Joris
inMTM for your acceptance and instruction of using inert atmosphere
furnace,the CIT football team which gave me a chance to be a goalkeeper for
the
firstseasonand
thetimefrom
adefenderforthesecond,Tri
who
being
with
meall
CameloTorestoHomeVesalius,thetwonicefamilyofMr.ThanhHai&Mis.MienTrung,
Hung&Hangwithalotofsupportfromtheearlydays,TanHung(little Hung) for your unforgettable
Martini wine party and Hung, Linh, TuyetAnh, brother Giang for the last but beautiful visit. My lovely group, Ms.
Lan,ThanhTam,ToNu,ZoanAn,HuuHa,allofyouarealsostillinmymindtodayandfuture.
Now, I would like to give all of my loving heart to my wife and
twodaughtersHaKhanhandCaoNguyen,whoalwaysgivemeanunlimitedenergysour
ceandthestrongestmotivationtoovercomethedifficultiesduringthetimeofstudying.Tomybeloved
wife,youknow,yoursacrificeandhardworkingto take care our angels during the time I was
away from home is the mostvaluable thing that I have ever had, that
reminded me of the responsibility notonly to our little family but also to
myself to keep my spirit on track withoutgiving up regardless the inevitable
obstacles.
To
my
father,
you
have
alwaysbeenbesidemeonmywayinspiteofthefactthatyouhaveletusaloneonthisplanet for
sixyears,Imissyousomuch.Mama,howcanIshowhowmuchimportant you are to me when now
you are become unique for my life, you donothavedirectcontributiontomywork,butthewayyou
have overcome thebig loss made me feel that you have been hiding your broken
heart
to
help
metofocusmoreonmywork.Ialsowouldliketogivemysinceregratitudetomymotherandfather-inlawforyouruncountablesupportintermsoffinanceandemotion.MysiblingsThuy,Tai,Mis.
Tramandmybrother-in-lawBinh,allofyou
alsoinmymindfor
yoursentimentalvaluethatyougave me.
ItwouldbemybigmistakeifIdonotincludeagreatdealofefforttoreadandcor
rectmythesisfromthemembersoftheBoardofJuriesforbothPremilinaryandPublicDefenc
estothisacknowledgement.T h i s helpsmealot
to realize that my thesis still need to be further revised, especially from
thecarefulreadinganddetailedcorrectionsofthereviewer,Dr.NguyenVanThang.Addition
to this, the useful comments from secretary of the Jury Dr. Tran ThiThu Phuong also help me to pay
much more attention to the last edit beforecompleting the thesis. The others in
the Juries in many ways also gave me theencouragement and positiveenergyto
defensemythesissuccessfully.
Duetothepademic,thePublicDefencewasheldonlineandIwasatthepoint of Le
Khiet
Gifted
High
School.
There
were
some
of
my
colleagues,
theschoolleaders,myteacher(NguyenTruong)andfriends,therefore,attendedtomy defence.
Especially,
Director
of
Education
and
Training
Department
ofQuangNgaiprovinceMr.NguyenNgocThaialsopresentedthere.Thepresence
of the Director made me feel much more excited and the atmosphereofthedefence
become
much
more
formal.
I
sincerely
yoursignificantsupportinthatday.
ThankyouALL.
thank
Mr.
Thai
and
theothers
for
CONTENTS
DECLARATIONACKNO
WLEDGEMENTSLIST
OFTABLES
LISTOFFIGURES
INTRODUCTION.............................................................................................1
Chapter1.LITERATUREREVIEW....................................................................6
1.1. OVERVIEWOFCURRENTPHOTOCATALYSTS................................6
1.2. MS2-BASED(M=Mo,W)PHOTOCATALYSTS....................................8
1.2.1. StructuresofMS2(M=Mo,W)............................................................8
1.2.2. MS2-basedcomposites....................................................................10
1.2.3. Synthesismethods...........................................................................11
1.2.3.1. MS2(M=Mo,W)synthesis........................................................11
1.2.3.2. MS2/g-C3N4synthesis...............................................................12
1.3. PHOTOCATALYTIC PROCESS, LIGHT SOURCES
ANDASSESSMENTBENCHMARKS.......................................................13
1.3.1. Photocatalyticdegradationmechanism.............................................13
1.3.2. Reactionkinetics.............................................................................15
1.3.3. Adsorptionroleinphotocatalyticprocess...........................................16
1.3.4.Lightsourcesforphotocatalysis–Lightemittingdiodes(LEDs)18
1.3.5. Photocatalyticreactorassessment....................................................19
1.4. PHOTODEGRADATION OF ANTIBIOTICS AND DYES
INAQUEOUSSOLUTION..........................................................................21
1.4.1. Antibioticsphotodegradation...........................................................21
1.4.2. Dyesphotodegradation...................................................................22
1.5. PHOTOCATALYTICPILOTDESIGNOVERVIEW............................24
1.5.1. Slurryreactorsversusimmobilizedcatalystreactors...........................25
1.5.2. Photocatalystseparation.................................................................26
1.5.2.1. Catalystimmobilization...........................................................26
1.5.2.2. Catalystseparation...................................................................27
Chapter2.EXPERIMENTALSECTION......................................................28
2.1. CHEMICALSANDEQUIPMENT........................................................28
2.2. MATERIALSFABRICATION.......................................................29
2.2.1. FabricationofWS2/g-C3N4..............................................................29
2.2.2. FabricationofMoS2/g-C3N4............................................................ 31
2.3. CHARACTERIZATIONS...................................................................34
2.3.1. Materialcharacterizations...............................................................34
2.3.2. Determiningpointofzerocharge................................................34
2.3.3. Lightspectraandintensity..........................................................35
2.4. PHOTOCATALYTICEXPERIMENTS.........................................35
2.4.1. Reactionsystem........................................................................35
2.4.2. Photocatalyticactivityevaluation..............................................36
2.4.3. Calibrationcurves.....................................................................38
2.4.4. Measurement of emitted irradiance using
spectrophotometerprobe....................................................................
39
2.4.5. CODmeasurement....................................................................40
2.4.6. High performance liquid chromatography (HPLC) and
massspectrometry(MS)
40
2.4.7. Activespeciesdetermination.....................................................41
2.4.8. Oxidizingagent.........................................................................41
2.5. PILOTDESIGN..............................................................................42
2.5.1. Pilotdescriptionandoperatingprinciples...........................................42
2.5.2. Detailedinstructions........................................................................43
2.5.3. TimingprogramforArduinocircuit..................................................46
2.5.4. Sedimentationprocedureandcatalystrecoverypercentage.................46
2.6. CALCULATIONS...............................................................................47
2.6.1. Reaction rate constant and photochemical space-time
yield(PSTY)
47
2.6.2. Adsorption capacity.......................................................................47
2.6.3. Flowrate forturbulentregime..........................................................48
2.6.4. Throughput forphotocatalytic pilot................................................48
Chapter3.RESULTSANDDISCUSSION.....................................................49
3.1. MATERIALCHARACTERIZATIONS...............................................49
3.1.1. WS2/g-C3N4characterizations.........................................................49
3.1.1.1. X-raydiffraction......................................................................49
3.1.1.2. Scanning electronmicroscopy.................................................50
3.1.1.3. Energy-dispersiveX-rayelementalmapping.............................51
3.1.1.4. Transmissionelectronmicroscopy...........................................52
3.1.1.5. Infraredspectroscopy...............................................................53
3.1.1.6. Raman spectroscopy...............................................................54
3.1.1.7. X-rayphotoelectronspectroscopy.............................................55
3.1.1.8. Thermogravimetricanalysis....................................................57
3.1.1.9. UV-Visdiffusereflectancespectroscopy..................................58
3.1.2. MoS2/g-C3N4characterizations.......................................................59
3.1.2.1. X-raydiffraction......................................................................59
3.1.2.2. Infraredspectroscopy...............................................................60
3.1.2.3. X-rayphotoelectronspectroscopy.............................................61
3.1.2.4. BETSurfacearea analysis........................................................62
3.1.2.5. Thermogravimetricanalysis....................................................63
3.1.2.6. UV–vis diffusereflectance spectroscopy................................65
3.1.2.7. Energy-dispersiveX-rayelementalmapping.............................65
3.2. MATERIALPHOTOCATALYTICACTIVITY.............................67
3.2.1. Adsorption-desorption equilibriumtime........................................67
3.2.2. Photocatalyticactivitycomparisons.................................................69
3.2.3. Effectofcatalyst loading...........................................................72
3.2.4. Adsorption andphotocatalysis........................................................74
3.2.4.1. Pointofzerochargeandexistedforms ofdye molecules..............74
3.2.4.2. EffectofpHsolution,importantroleofadsorptionstep..................76
3.2.5. A new benchmark for efficiency evaluation of reaction reactor –
Photochemicalspacetimeyield..................................................................81
3.2.5.1. Calculatereactionrateconstantunderoptimalcondition..............81
3.2.5.2. PSTYcalculationsforthechosenreactionsystems.......................82
3.2.6. Mechanisminvestigation.................................................................84
3.2.6.1. Effectofoxidantconcentration..................................................84
3.2.6.2. Reactive species trapping experiments and
proposedphotocatalyticmechanism......................................................86
3.2.7. Applications...................................................................................91
3.2.7.1. Photodegradationofaselectedantibiotic,enrofloxacin................91
3.2.7.2. Designed-pilotevaluation........................................................96
CONCLUSIONS...........................................................................................100
LISTOFPUBLICATIONS.............................................................................102
REFERENCES..............................................................................................103
APPENDIX
LISTOFABBREVIATIONS ANDSYMBOLS
1. Abbreviations
AOPs
:
Advancedoxidationprocesses
BET
:
Brunauer–Emmett –Teller
BQ
:
p-Benzoquinone
CB
:
Conductionband
COD
:
Chemicaloxygendemand
CVD
:
Chemicalvapourdeposition
DMSO
:
Dimethylsulfoxide
DRS
:
Diffusereflectancespectroscopy
EDX
:
Energy-dispersiveX-rayspectroscopy
ENR
:
Enrofloxacin
FTIR
:
Fouriertransforminfrared
IR
:
Infrared
LC-MS
:
Liquid chromatography – Mass
spectrometryLED :
Light-emittingdiode
LP
:
Standardizedlamppower
MB
:
Methyleneblue
MCN
:
MoS2/g-C3N4
MS2
:
MoS2,WS2
PL
:
Photoluminesence
PSTY
:
Photochemicalspace-timeyield
pzc
:
Pointofzerocharge
RhB
:
RhodamineB
SEM
:
Scanningelectronmicroscopy
SSA
:
Specificsurfacearea
STY
:
Space-timeyield
TBA
:
Tert-butylalcohol
TEM
:
Transmissionelectronmicroscopy
TEOA
:
Triethanolamine
TGA
:
Thermalgravimetricanalysis
TMDs
:
Transitionmetalchalcogenides
UV
:
Ultraviolet
WCN
:
WS2/g-C3N4
VB
:
Valenceband
XPS
:
X-rayphotoelectronspectroscopy
XRD
:
X-raydiffraction
C
:
Concentration
D
:
Innerdiameter
Eg
:
Bandgap
h
:
Planckconstant
k
:
Rateconstant
m
:
Mass
P
:
Power
Q
:
Flowrate
q
:
Adsorptioncapacity
Re
:
Reynoldnumber
2. Symbols
r
:
reactionrate
S
:
Surface area
t
:
Time
V
:
Volume
ρ
:
Densityofflowing fluid
π
:
Pinumber
μ
:
Dynamicviscosity
ν
:
Frequency
θ
:
Fractionofreactantabsorbed
LISTOFTABLES
Table2.1.Mainfeaturesoftheusedchemicals......................................................28
Table2.2.Equipmentforpilotbuilding............................................................29
Table3.1.BETspecificsurfacearea(SSA)andporevolumeofthegC3N4,MoS2andMCNxsamples....................................................................63
Table3.2.PSTYdataforthechosenreactionsystems.........................................83
LISTOFFIGURES
Figure 1.1.MoS2structure in three dimensions with the distance between
thetwoadjacentlayers of6.5 Å[142]....................................................................8
Figure1.2.Fourcommon MoS2poly-types[12]...................................................9
Figure1.3.Photocatalysisprinciple[17].............................................................14
Figure1.4.Five-stepflowchartofheterogeneous photocatalysis[17]15
Figure1.5.Molecularstructureofenrofloxacin(left)anditsUV-Visspectrum(right).. .22
Figure 1.6.Methylene blue (a) and rhodamine B (b) structures and
theircorrespondingUV-Vis spectra............................................................23
Figure2.1.Formationofg-C3N4fromthioureabyheating.....................................30
Figure2.2.Imagesofsamplesg-C3N4,WS2,5WCN,7WCN
and10WCN.31Figure
2.3.Images of samples g-C3N4, MoS2, MCN1, MCN2, MCN3 andMCN5.......33
Figure2.4.Photocatalyticreactor.............................................................36
Figure 2.5.Reaction system: (a) black box, (b) DC power supply and
(c)thermostatbath.
..................................................................................................................
36
Figure2.6.Spectrumoflightemittedfromtheincandescentlamp........................37
Figure2.7.SpectrumoftheblueLEDlight.......................................................38
Figure
2.8.Calibrationcurvesforquantitativedeterminationoftargetmolecules......39
Figure2.9.Photocatalyticpilot..........................................................................42
Figure2.10.Schematicrepresentationofthepilot:dischargingvalve(1),chargingv
alvewithfilter(2),controlbox(3),stirrer(4),pumpingvalve(5),
flowsensor(6),deliverytube(7),blueLEDs(8),rechargingtube(9),pump
(10)andsettlingcolumn(11)..............................................................................43
Figure2.11.Controlbox....................................................................................44
Figure2.12.Feed tank.......................................................................................45
Figure2.13.Collector: (a)not working,(b)working............................................45
Figure2.14.Timingprogram..............................................................................46
Figure3.1.XRDpatternsof5WCN,7WCN,10WCN,WS 2,gC 3N4,andthereferencefor WS2(Rf).......................................................................50
Figure3.2.SEMimagesof5WCN(a),7WCN(b),10WCN(c),WS 2(d),andgC3N4(e).............................................................................................................51
Figure3.3.EDXelementalmappingofC(a),N(b),S(c)andW(d)elementsfor10WC
N......................................................................................................................52
Figure3.4.TEM imagesof10WCN(a)andg-C3N4(b)..........................................53
Figure3.5. I R sp ec t r a of 5 WC N, 7W CN , 1 0 W C N , W S 2,an d g .....................................................
C 3N4i n t he wavenumberregionof400-4000cm-1
53
Figure3.6.IRspectraof5WCN,7WCN,10WCN,WS 2inthewavenumber
.........................................................................................
regionof400– 600cm-1
54
Figure3.7.Raman spectrumof 10WCN............................................................55
Figure3.8.High-resolutionXPSofC1s(a),N1s(b),S2p(c),W4d(d),W4f(e)andXPSof
10WCN(f)........................................................................................................56
Figure3.9.TGAcurvesofsamples5WCN,7WCN,10WCN,WS2andg-C3N4.
.........................................................................................................................58
Figure3.10.UVVisdiffusereflectance spectraof5WCN, 7WCN,10WCN composites,WS2,a
ndg-C3N4..........................................................................................................59
Figure3.11.XRDpatternsofMoS2,g-C3N4,andMCNx(x=1,2,3,5).60
Figure3.12.F T I R s p e c t r a o f M o S 2,g - C 3N4a n d M C N x ( x = 1 , 2 , 3 , 5 )
samples............................................................................................................61
Figure3 . 1 3 . X P S s p e c t r a o f M o 3 d ( a ) , S 2 p ( b ) a n d ( c ) X P S s u r
v e y spectrumof MCN5sample.
..................................................................................................................
62
Figure3.14.N2adsorptionisothermsofMoS2,g-C3N4andMCNx(x=1,2,3,5)samples
.........................................................................................................................63
Figure3.15.TGAcurvesofsamplesMoS2,g-C3N4,andMCNx(x=1,2,3,5)
in
Ar
atmosphere......................................................................................................64
Figure 3.16.UV-Vis absorption spectra (a) and corresponding Tauc plots
(b)of MoS2,g-C3N4,andMCNx(x =1,2,3,5)......................................................65
Figure 3.17.EDX elemental mapping of C (a), N (b), Mo (c) and S
(d)elementsfor MCN2sample....................................................................66
Figure
3.18.Adsorption-desorption
equilibrium
of
MB
over
WS 2,
5WCN,7WCN, 10WCN and g-C3N4in the dark. Conditions: initial MB
.......................................
concentration30mg.L-1,pH6.4, catalystloading1.1g.L-1
67
Figure 3.19.Adsorption-desorption equilibrium of RhB over MCN5,
MCN3,MCN2, MCN1 and g-C3N4in the dark. Conditions: initial RhB
.......................................
concentration5 mg.L-1,pH3, catalystloading0.7g.L-1
68
Figure3.20.AdsorptiondesorptionequilibriumofRhBoverMoS2inthedark.Conditions:initialMBconcentration25
mg.L-1,pH3,catalystloading0.7g.L-1....................................................................68
Figure 3.21.Photocatalytic degradation of MB on 5WCN, 7WCN,
10WCN,WS2andgC3N4,andwithoutthephotocatalyst.Conditionsofprocess:irradiated volume:
90
mL,
initial
MB
concentration:
mg.L -
30.0
1
,pH6.4,catalystloading:1.1g.L -1,25oC,under100Wincandescentlamp.
.........................................................................................................................69
Figure 3.22.First-order kinetic plots for the photodegradation of MB
over5WCN,7WCN,10WCN, WS2andg-C3N4underspecified conditions7 0
Figure3.23.First-orderkineticplotsforthephotodegradationofRhBoverMCNx
and g-C3N4samples.
Conditions
of
process:
irradiated
25mL,initialRhBconcentration:5.0mg.L-1,pH3.0,catalystloading:0.7g.L-
volume:
1
, 25oC,underbluelight.ExceptforMoS2: initialRhBconcentration:25.0mg.L-1
..................................................................................................................
71
Figure3.24.PLspectraofg-C3N4andMCN1sample........................................72
Figure3 . 2 5 . E f f e c t o f c a t a l y s t l o a d i n g o n ( a ) R h B d e g r a d a t i o n o v e r M
C N 1 catalystintheconditions:irradiatedvolume:25mL,initialRhBconcentration:
5.0 ppm, pH: 3.0, 25oC, under blue light, and (b) MB degradation over
7WCNcatalystintheconditions:irradiatedvolume:90mL,i n i t i a l M B concentra
tion:3 0 . 0 m g . L -1,p H 6 . 4 , 2 5 oC,u n d e r 1 0 0 W i n c a n d e s c e n t l a m p .
.........................................................................................................................73
Figure3 . 2 6 . I r r a d i a n c e o f t r a n s m i t t e d b l u e l i g h t o f d i f f e r e n t R
h B s o l u t i o n heightswithvaryingloadingsofMCN1fromthesolution.................74
Figure3.27.ValuesofpHpzcof(a)MCN1and(b)7WCNsamples..........................75
Figure3.28.RhBmoleculeexistsas(a)cationicformand(b)zwitterionicform.
.........................................................................................................................75
Figure3.29.Thesolelyexisted cationicformof MB.............................................76
Figure3.30.EffectofinitialpHonRhBdegradationoverMCN1photocatalyst.Process
conditions:initialconcentration,5.0ppm;catalystloading:0.7g.L-1;25oC;underbluelight........................76
Figure3.31.EffectofinitialpHonRhBdegradationover7WCNphotocatalyst.Process
conditions:initialconcentration,30.0ppm;catalystloading:1.1g.L-1;25oC;under100 Wincandescentlamp
.........................................................................................................................77
Figure3.32.AdsorptioncapacityofMCN1(a)and7WCN(b)materialstowardRhBatdiff
erentsolutionpHs..............................................................................................78
Figure3.33.(a)EffectofinitialpHonMBdegradationoverMCN1photocatalyst.
Process conditions: initial concentration, 10.0 ppm; catalystloading: 0.7 g.L-1;
25oC;
under
blue
light,
and
(b)
Effect
of
initial
pH
MBdegradationover7WCNphotocatalyst.Process conditions: initial
on
concentration,30.0ppm;catalystloading:1.1g.L1
;25oC;under100Wincandescentlamp.....................................................................79
Figure 3.34.Adsorption capacity of 7WCN and MCN1 materials towards
MBatdifferentsolutionpHs.....................................................................................80
Figure 3.35.First-order kinetic plots for the photodegradation of: (a)
MBover MCN1 material. Conditions of process: irradiated volume: 25
mL,initial MB concentration: 10.0 mg.L -1, pH 10.0, catalyst loading: 0.7
g.L1
,25oC,underbluelight,and(b)MBandRhBover7WCNmaterial.Conditionsof
process:irradiatedvolume:90mL,initialdyeconcentration:
30.0 mg.L-1, pH 2.5 for RhB and 9 for MB , catalyst loading: 0.7 g.L -1,
25oC,under 100Wincandescentlamp..........................................................81
Figure
3.36.Effect
of
H2O2-RhB
molar
ratio,
abbreviated
as
Rnumber.Process conditions: catalyst loading: 0.7 g.L -1, initial RhB
concentration:5.0 ppm,pH: 3.0, 25oC, under blue light............................85
Figure 3.37.Photodegradation of RhB over MCN1 catalyst in the presence
ofdifferent trapping agents TEOA, BQ, TBA, and DMSO as hole,
superoxideradicalanion,hydroxyl radical,electron scavengers,respectively.....86
Figure
3.38.a)
Proposed
photocatalytic
mechanism
over
MoS2/g-
C3N4undervisible light and b) proposed model for relationship between
adsorption andphotocatalysis..........................................................................88
Figure3.39.TimedependentadsorptionspectraofRhBsolution.Conditionso f pr o ce ss : irradi at ed
vol um e: 2 5 mL, i n i t i al RhB c on ce nt r a t i on :
5.0mg.L-1,pH3.0,MCN1catalystloading:0.7g.L-1,25oC,underbluelight.
.........................................................................................................................90
Figure3.40.TransformationofrhodamineBtorhodamine110.............................91
Figure 3.41. Photodegradation of 20 mL ENR of 5 ppm, catalyst
loading:0.5g.L-1,under bluelight(0.2A,3.0V) for2h,25oC atdifferentpHs.91