Halfpipe
Halfpipe
Math Concept Reader
ca54os_lay_070107xad_cp.indd 3 1/8/07 11:28:02 PM
DIGITAL FINAL PROOF
Expedition:
Antarctica
by Aenea Mickelsen
ca62xs_lay_061207ad_am.indd 4 1/9/07 9:09:15 AM
DIGITAL FINAL PROOF
Halfpipe
by Ilse Ortabasi
Math Concept Reader
Copyright © Gareth Stevens, Inc. All rights reserved.
Developed for Harcourt, Inc., by Gareth Stevens, Inc.
This edition published by Harcourt, Inc., by agreement with Gareth Stevens, Inc.
No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy, recording, or any information
storage and retrieval system, without permission in writing from the copyright holder.
Requests for permission to make copies of any part of the work should be addressed
to Permissions Department, Gareth Stevens, Inc., 330 West Olive Street, Suite 100,
Milwaukee, Wisconsin 53212. Fax: 414-332-3567.
HARCOURT and the Harcourt Logo are trademarks of Harcourt, Inc., registered in the
United States of America and/or other jurisdictions.
Printed in the United States of America
ISBN 13: 978-0-15-360198-9
ISBN 10: 0-15-360198-1
1 2 3 4 5 6 7 8 9 10 179 16 15 14 13 12 11 10 09 08 07
ca54os_lay_070107xad_cp.indd 1 1/8/07 11:28:04 PM
DIGITAL FINAL PROOF
Chapter 1:
Halfpipe
Dreams
ItisearlySeptemberandMr.Dunbar’sstudentsareinscienceclass.
Outside,theweatherisstillwarm,butthepublicswimmingpoolsinBoise,
Idaho,arealreadyclosedfortheseason.Thecrowdsdisappearshortlyafterthe
LaborDayholiday.Thelifeguardsreturntoschoolortotheirwinterjobs.
Mr.Dunbarstandsbeforetheclassasheintroducestherstscienceunit.
HesaysthattheclasswillstudyNewton’sLawsofMotion.Heasksifanyof
thestudentshaveeverheardoftheselawsofphysics.Whennobodyanswers,he
askstheclasswhetheranyofthemhavesnowboardedbefore.Onlyafewofthe
studentsraisetheirhands.Then,heaskshowmanyofthemhavewatchedthe
WinterOlympicssnowboardingcompetitions.
Itturnsoutthatquiteafewofthestudentshavewatchedsnowboardingon
television.Thestudentsdon’thavemuchexperiencesnowboarding,buttheydo
havesomeknowledgeaboutthesportandthetricksthattheathletesdo.
Everybodyintheclasswonderswhatsnowboardingcouldpossiblyhaveto
dowithNewton’slaws.
ca54os_lay_070107xad_cp.indd 2 1/8/07 11:28:05 PM
DIGITAL FINAL PROOF
This is a diagram of a halfpipe.
Melanietellstheclassthatshelovestowatchsnowboardersridedownthe
halfpipeanduptheotherside.Melaniemakestheshapeofatroughwithher
handstoshowtheotherstudentswhatthehalfpipelookslike.Thehalfpipeis
dugrightintothesnowandthewallscanbeasmuchas18metersacross.
Eduardosaysthathelikestowatchsnowboardersdotrickslikearodeoip.
Heexplainsthatarodeoipisa720-degreesidewayssomersault.
Mr.DunbarexplainsthatNewton’sLawsofMotionhelpthesnowboarder
maneuveranddotricks.HesaysthatNewton’srstlawstatesthatanobjectat
restremainsatrest.Thislawalsostatesthatanobjectinmotioncontinuesat
aconstantspeedandinastraightlineunlessactedonbyanoutsideforce.Mr.
Dunbartellstheclassthatthisisthereasonthatsnowboarderscansoarsohigh
intheair.Becausetheyareinmotionwhentheyreachthetopofthepipe,they
stayinmotion.Next,heexplainsthatNewton’ssecondlawofmotionstatesthat
theEarth’sforceofgravitypullsthesnowboarderbackdowntotheground!
10 to 18 meters
1.5 to 3
meters
Entry Ramp
Flat
Lip
Vertical
Platform
Transition
Wall
10 to 30
centimeters
50 to 100 meters
ca54os_lay_070107xad_cp.indd 3 1/8/07 11:28:08 PM
DIGITAL FINAL PROOF
When class is over, the students continue to talk about snowboarding.
Melanieandherfriendscontinuetotalkaboutsnowboardingwhenclassis
over.Theythinkabouthowgreatitwouldbeiftheycouldgosnowboardingthis
winter.Manyofthemknowhowtorideskateboards,butMelanieandherfriends
havenevertriedsnowboarding.
Cathypicturesherselfonasnowboard,yingdownthemountainatfull
speed.Eduardohasgonesnowboardingbefore,andhetellshisfriendsallabout
it.Heexplainsthatwhencarving,asnowboardermustturnwithoutanyskidding,
makingasingle,thinlineinthesnow.Itisaskillthatisverydifculttolearn.
Eduardopretendstocarveupthehalfpipeandperformatrickintheair.Helands
withathumponthegrassontheplayground.Hegetsup,anddeclaresthatthis
yearhewantstogosnowboardingagain.
Michaelwalksoverandjoinsthegroupoffriends.HetellsEduardoand
theothersthattheMogulValleyResortnearbyrunssnowboardinglessonsfor
schools.Hesawanarticleabouttheresortinthesportssectionofthelocal
newspaper.
ca54os_lay_070107xad_cp.indd 4 1/8/07 11:28:12 PM
DIGITAL FINAL PROOF
This snowboarder wears the proper safety equipment as he
enjoys his run through the halfpipe.
Melanieisexcitedabouttheideaoftakinglessons.Sheremindsherfriends
thatitwillbeexpensiveforthewholeclasstogo.Michaelsaysthecostforone
dayis$25.00aperson.Thiscostincludesthelessonaswellastheuseofa
snowboardandboots.
“Thepriceevenincludesallthesafetyequipment,”Michaelsays.“Because
snowboardingisanextremesport,weshouldwearwristguards,kneepads,and
hippads.Hippadsareusedtocushionyourfallsandkeepyourseatwarmand
dry.Theyarestretchyandpullonlikebikeshorts.Youhavetoweara
snowboardhelmetwhilesnowboarding,too.”
“Youalsoneedasafetyleash,”addsEduardo.“Theleashisdesignedto
keepyourboardattachedtoyourleg.Thatway,iftheboardcomesloosefrom
yourboots,theleashwillstopitfromslidingawaydownthehill.”
Cathywondershowthestudentswouldtraveltotheslopes.Michaelexplains
thateventhebustransportationandliftticketsareincludedinthecostofthe
lesson.Now,thestudentsbelievethattheycanraisethemoneysotheycanall
gosnowboardingtogetherthiswinter.
ca54os_lay_070107xad_cp.indd 5 1/8/07 11:28:15 PM
DIGITAL FINAL PROOF
Mr. Dunbar explains how Newton’s laws affect snowboarding.
Michaelbringsthenewspaperarticleaboutthesnowboardinglessonsto
schoolthenextday.Mr.Dunbaraskshimuptoreadthearticletotheclass.The
articlesays,“Theprogramisdesignedtoteachwintersports.Itfocusesonthe
safeenjoymentofsnowboardingasalifetimesport.Qualiedinstructorshelp
studentsdeveloptheirsnowboardingskills.Level1classesareforthosestudents
whohaveneversnowboardedbefore.”
Theclasscriesout,“That’sus!”
Michaellooksathisteacher.Mr.Dunbarhasalreadydecidedthatthe
experienceofsnowboardingwouldworkverywellwithhislessononNewton’s
lawsofmotion.Hecannotthinkofabetterwayforhisstudentstolearnand
understandNewton’slawsthanexperiencingthemrsthandontheslopes.Onthe
slipperysnow,hisstudentswillseeforthemselveswhatitmeansforobjectsto
stayinmotion!
Mr.Dunbarletstheclassknowthathewillhelpthemraisethefunds.He
willalsohelporganizetheclasstriptoMogulValleyResort.Thestudentsareso
excitedaboutthetripthattheyallclapandcheer.
ca54os_lay_070107xad_cp.indd 6 1/8/07 11:28:18 PM
DIGITAL FINAL PROOF
$25.00 × 27 = $675.00
,
The students decide that the first step they need to take is to calculate how
much money they need for the trip. The class includes a total of 27 students.
Michael multiplies 27 by $25.00, which is the cost for each student. The product
is $675.00. Thatʼs how much money the class needs to pay for the trip.
Cathy suggests they raise the funds for the trip by selling popcorn. A friend
of hers in another class raised funds that way last year, and the school can
purchase cases of popcorn for students to sell. Mr. Dunbar talks to the schoolʼs
principal. She thinks the popcorn fundraiser is a good idea and agrees to help
the class.
Mr. Dunbar orders the popcorn for the fundraiser. Half of the money the
students collect will pay for the popcorn, while the other half will be the profit
for the trip. The popcorn arrives in October. Each student in Mr. Dunbarʼs class
agrees to sell at least one case of popcorn. Some students hope to sell even more
than that. Students work hard to sell popcorn right away because the date of the
December trip is not far away.
Melanie’smothervolunteerstohelpwiththefundraiser.Shecomestoschool
oftentocollectmoneyfromthepopcornsales.MelanieandMichaelhelpheradd
upthemoney.
Theclassmeetstheirgoalforsellingpopcorn.Theymade$1,470.00!First,
thestudentsneedtopayforallofthepopcorn.Theschoolpaid$735.00forthe
popcorn.
M
rs.Petty,theprincipal’sassistant,subtractsthisamountofmoneyfromthe
amountcollectedbythestudents.Sheusesthatmoneytopayforthepopcorn.
$1,470.00−$735.00=$735.00
Thestudentshave$735.00leftover.Thatamountismorethanenoughtopay
forthetrip.Thetripcosts$675.00.
Theydidit!Thefundraiserwassuccessful.Everyoneintheclasswillgoon
thesnowboardingtrip.Mr.Dunbarandthestudentscelebratetheirsuccesswitha
fewbagsofpopcorn.
$ 1,470.00
− $ 735.00
$ 735.00
ca54os_lay_070107xad_cp.indd 8 1/8/07 11:28:25 PM
DIGITAL FINAL PROOF
Results: Men’s
and Women’s
Snowboard Halfpipe
Chapter 2:
Mr.Dunbarprepareshismathlessonwithhisstudents’interestabout
snowboardinginmind.Healwayslikestomakeconnectionstotherealworld
inhislessons.Today’slessoniscalled“FascinatingFactsaboutSnowboarding.”
Thisisonelessonthatthestudentscan’twaittostart.
Eduardoseemstobeveryknowledgeableaboutsnowboarding.Mr.
Dunbaraskshimtoexplaintotheclasswhatthehalfpipesnowboardingevent
isallabout.Eduardodescribesthehalfpipeasahalf-cylindricaleldabout145
meterslongthatisdugintothesnow.Snowboardersenterthehalfpipefroma
rampatthetop.
Eduardoexplainshowthesnowboardersmustcrossthehalfpipefromsideto
sidesixtoeighttimesduringacompetition.Theymustusethefulllengthofthe
pipe.Theydothiswhileperformingacrobatics,calledmaneuversortricks.
Fivejudgesawardpointsforthemaneuvers.Theygivepointsfortheheight
ofthesnowboarder’sjumps.Inaddition,thejudgesscoretheoveralltechnical
qualityoftheperformance.Thisportionofthescoreincludesthequalityofthe
landings.Snowboardersaresupposedtohaveclean,smoothlandings.They’re
notsupposedtofall,orusetheirhandstokeepthemfromfalling.
ca54os_lay_070107xad_cp.indd 9 1/8/07 11:28:26 PM
DIGITAL FINAL PROOF
10
The12snowboarderswhoachievethehighestscoresinthetwo
qualifyingrunsadvancetothenalroundofcompetition.Thenalround
consistsoftworuns,eachofwhichincludesvejumps.Thesnowboardersget
ascoreforeachrun,butonlythebetterofthetwoscorescounts.Thatallows
themtotakechances.Iftheyfallontheirrstrun,theyalwayshaveanotherrun
toimpressthejudges.
Mr.Dunbarbroughttheresultsfromamen’sandwomen’shalfpipe
competitiontosharewiththeclass.Hewantstheclasstodeterminethewinner
ofeachnalevent,aswellashowtherstfourcompetitorsranked.Mr.Dunbar
saysrankingmeansputtingthecompetitorsinrst,second,third,andfourth
positions,accordingtotheirscores.Thenheadds,“Thiscanbedonebyadding
andsubtractingdecimals.”
Mr.Dunbarprojectsatableonthescreenoftheclassroom’scomputer.The
tableshowsthepointsthevejudgesgavethemalesnowboarders.Theclasswill
computethescoresforeachsnowboarderinthecompetition,andrankthetop
four.Tondthescoreforeachathleteinbothruns,theyneedtoaddupthepoints
foralljumps.
Athlete’s
Bib Number Jump 1 Jump 2 Jump 3 Jump 4 Jump 5
31 8.58 8.03 8.1 8.5 8.48
25 8.1 7.6
8.47 8.4 7.8
19 4.4 4.06
4.23 4.04 4.2
8 9.56 9.4
9.6 9.02 9.5
31 7.8 6.7
7.67 7.01 8.03
25 6.95 5.2
6.82 5.7 6.8
19 9.03 8.63
8.7 8.6 9.1
8 5.5 5.5 6.5 4.5 4.62
1
st
Final Run2
nd
Final Run
Results from Final Men’s Halfpipe Competition
ca54os_lay_070107xad_cp.indd 10 1/8/07 11:28:27 PM
DIGITAL FINAL PROOF
A snowboarder completes a maneuver on the
halfpipe.
11
“Youknowhowtoaddwholenumbers,soyoualreadyknowhowtoadd
numberswithdecimals,”Mr.Dunbarsays.“Youjustneedtolineupthedecimal
points.Youcangiveyourdecimalsthesamenumberofplacesbyaddingon
zeros.Thatmakesiteasiertokeeptrackofplacesasyoudoyouraddition.”
Asanexample,Mr.Dunbarstandsinfrontoftheclassandcomputesthe
rstnalrunscoreforthesnowboarderwithbibnumber31.Hetakesthe
snowboarder’svejumpscoresandaddsthemtogetherbyliningupthe
decimalpointsandaddingzeroessothatallofthescoreshavethesame
numberofplacesafterthedecimal.
Soonthewholeclassisbusyguringoutwhowonthemen’shalfpipe
competition.Eduardoremindstheclassthattherunwiththehighestscoreisthe
onethatcountsforeachsnowboarder.Hedoesn’tknowifthatscoringruleis
thesameforallOlympicwintersports,though.Eduardo,Roy,andAngelawork
together.Theynishaddingthescoresforthemen’shalfpipesnowboarding
competition.
ca54os_lay_070107xad_cp.indd 11 1/8/07 11:28:30 PM
DIGITAL FINAL PROOF
1
Thesnowboarderwhowaswearingbibnumber8rankednumber1.Hehad
thehighestscoreonhisrstrun!Thesecondhighestrankedsnowboarder
receivedhisbestscoreonthesecondrun.Thethirdandfourthhighestranked
snowboardersreceivedtheirbestscoreontheirrstruns.
Mr.DunbartellstheclassthatnotallofthesportsintheWinterOlympicsare
scoredthesamewayassnowboarding.Inskijumping,thewinneristheathlete
whoreceivesthehighesttotalscorefromtwojumps.Unlikeinsnowboarding,the
worstscoreisn’tthrownout.
Eduardowonderswhetherthatdifferentmethodofscoringwouldhave
changedtheresultsofthesnowboardinghalfpipecompetition.Melanieraises
herhandandtellstheclassthatshehasalreadydonethecomputationsinher
notebook.Sheaddedupscoresfromtherstandsecondnalrunsforeach
snowboarder,andrankedthembasedontotalscore.IftheOlympicjudgeshad
computedthepointsaccordingtotheskijumpingrules,thenalrankingofthe
snowboarderswouldhavebeendifferent!
Athlete’s 1
st
Final Run 2
nd
Final Run
Bib Number
Total Score Total Score
31 41.69 37.21
25 40.37 31.47
19 20.93 44.06
8 47.08 26.62
Results from Final Men’s Halfpipe Competition
Athlete’s
Rank Bib Number
Score
1 8 47.08
2 19 44.06
3 31 41.69
4 25 40.37
Final Rankings
ca54os_lay_070107xad_cp.indd 12 1/8/07 11:28:31 PM
DIGITAL FINAL PROOF
1
Melanietellstheclassthatifthescoresfromthetworunshadbeenadded
together,rstplacewouldhavegonetothesnowboarderwearingbibnumber
31.Snowboardernumber8wouldhavenishedinsecondplaceinsteadofrst
place.Thethirdrankingathletewouldbenumber25andthefourthranking
athletewouldbenumber19.
Theclassconcludesthatthescoringrulescanmakeabigdifferenceon
whereeachsnowboardernishesinthenalrankings.Theyalsoagreethatfor
snowboarding,keepingjustonescoreisagoodidea.Otherwise,theathletes
mightnottryasmanyriskytricks,anditmightnotbeasexcitingtowatch.
Astheschoolbellrings,Mr.Dunbarpassesoutthedatafromthewomen’s
naleventandtellstheclassthatthecomputationsoftheresultsofthewomen’s
naleventwillbetheirhomeworkassignment.
Thenextday,Mr.Dunbargoesoverthehomeworkwithhisstudents.The
classmeetsingroupstoreviewtheircomputations.Angelaandtheother
studentsinhergroupmadeatableoftheresultsforthesecondnalruninthe
women’shalfpipesnowboardingcompetition.
Athlete’s
Bib Number Jump 1 Jump 2 Jump 3 Jump 4 Jump 5
1 8.0 8.5 8.0 8.4 8.2
3 8.2 8.7 8.3 8.7 7.6
4 8.9 9.0 8.9 8.9 8.9
22 7.7 8.3 7.9 8.6
8.4
Results from 2
nd
Final Run Women’s Halfpipe Competition
Athlete’s
Bib Number
Score
1 41.1
3 41.5
4 44.6
22 40.9
2
nd
Final Run
ca54os_lay_070107xad_cp.indd 13 1/8/07 11:28:32 PM
DIGITAL FINAL PROOF
Chapter 3:
Off to the
Slopes
It’s time to try snowboarding!
1
Atlast,thebigdayofthesnowboardinglessonishere.Thebusarrivesearly
inthemorning.Thegroupcan’twaittogetstartedontheday.Mr.Dunbarand
theotheradults,whowillridealongtohelpstudents,noticethestudents’laughter
andchatter.Thestudentsareexcitedabouttheirtrip.
Aninstructormeetstheclasswhenthebusarrives.Shehasalreadysetoutall
thesnowboards,boots,helmets,andtheothergearthestudentsneedfortheirrst
lesson.Theinstructorexplainshowtheequipmentworksandshowsthegroup
howtoproperlyusethesafetygear.
Thestudentswatchasanadvancedsnowboarderdoestricksinthehalfpipe.
Ridingthehalfpipeisdenitelynotfornewsnowboarders!Eduardoremarks,
“NowIcanseeNewton’sLawsofMotionatwork.That’samazing!”
Theinstructortakestheclasstothebeginner’s
area.Shetellsthestudentsthatittakesyearsof
practicetobeagoodhalfpiperider.New
snowboardersneedtostartonthebeginner’sslope,
wheretheycanlearnhowtoproperlycontroltheir
boards.Thestudentssoonrealizethat
snowboardingisalotharderthanitlooks!
ca54os_lay_070107xad_cp.indd 14 1/8/07 11:28:34 PM
DIGITAL FINAL PROOF
This student slides down the beginner’s slope.
1
Bytheendoftheday,allofthestudentsareabletoslidedownthe
beginner’sslope.Johnevenmanagestoride“fakie.”Ridingfakie,oraswitch
stance,meansthatyourfrontfootisatthebackoftheboard,andyourbackfoot
isatthefrontoftheboard.Itsoundslikeitshouldbeeasy,butit’snot!Someof
thestudentsintheclasstryit,butJohnistheonlyonewhodoesnotendupwith
hisnoseinthesnow.
Theinstructorexplainsthatridingfakieonasnowboardisimportantto
learnifyouwanttodoothermoredifculttricks.Manytricksbeginorendwith
aswitchstance.
Beforelong,itistimetogohome.Itisnearlydarkandeveryoneis
exhausted.Whenthebusreturnstotheschoolparkinglot,manyofthestudents
areasleep.Someoftheadultsareasleep,too.Thedaywasahugesuccess,and
everyonehadagreattimeontheslopes.Thestudentsareeagertotelltheir
familiesallabouttheirexperiences.Nodoubt,therewillbesomegreatstories
abouttheirsnowboardingadventures!
ca54os_lay_070107xad_cp.indd 15 1/8/07 11:28:39 PM
DIGITAL FINAL PROOF
1
Glossary
acrobaticscontrolledbodymovementsinthesportofgymnastics
bib numberi
nsportsevents,aracenumberthatiswornbycompetitorsandis
attachedtotheirouterwear
cylindricals
hapedlikeacylinder
decimalan
umberwithoneormoredigitstotherightofthedecimalpoint
fakier
idingbackwardsonthesnowboard
nalf
ormingoroccurringattheend
halfpipe as
mooth-surfacedstructureshapedlikeatroughandusedforstuntsin
sportssuchasin-lineskatingandsnowboarding
lifetime sport s
portsperformedbypeopleonaregularbasisevenaftertheyare
nolongeryoung
maneuver am
ovementthatrequiresskillandability
NewtonE
nglishmathematicianandphysicist.SirIsaacNewton,wholivedfrom
1642-1727.Newtondevelopedthelawsofgravityandmotion.
Olympicst
hemodernrevivaloftheancientGreeksportsgamesheldonceevery
4yearsinaselectedcountry
qualify m
eetingtheproperstandards,requirements,andtrainingforanofceor
positionortask
rank apo
sitioninagroup
PhotoCredits:cover,titlepage,pp.5.6©Corbis;p.4©MaryKateDenny/PhotoEdit;p.11©Jeff
Curtes/Corbis;pp.14.15©CindyCharles/PhotoEdit.
ca54os_lay_070107xad_cp.indd 16 1/8/07 11:28:40 PM
DIGITAL FINAL PROOF
Think and Respond
1. Five judges give a snowboard competitor scores of 5.6, 6.7, 8.9, 5.8, and 8.4 for
her first jump. What is the mean score for this jump?
2. The popcorn for the fundraiser that Mr. Dunbarʼs class sold cost $7.30 for each
package. There are three bags of popcorn in each package. How much would
three packages of popcorn cost?
3. This table shows the scores of the four women snowboarders from a recent
competition. Find the range, which is the difference between the greatest
number and the least number, for this set of data.
4. Is it possible for a competitor in the snowboarding halfpipe event to win the
event if his or her first run gets a low score? Explain your answer.
Results from Women’s Halfpipe Competition
Athlete’s
Bib Number 14 38 58 67 70 89
Score 50.12 52.09 52.93 55.29 51.02 53.91