ĐỀ MẪU CĨ ĐÁP ÁN
ƠN TẬP GIẢI TÍCH
TỐN 12
Thời gian làm bài: 40 phút (Không kể thời gian giao đề)
-------------------------
Họ tên thí sinh: .................................................................
Số báo danh: ......................................................................
Mã Đề: 045.
Câu 1. Cho hình phẳng
giới hạn bởi đường cong
. Khối trịn xoay tạo thành khi quay
A. .
Đáp án đúng: C
B.
.
quanh trục hoành có thể tích
C.
Giải thích chi tiết: Cho hình phẳng
, trục hoành và hai đường thẳng
.
D. .
giới hạn bởi đường cong
. Khối trịn xoay tạo thành khi quay
bằng
, trục hồnh và hai đường thẳng
quanh trục hồnh có thể tích
bằng
A. . B.
. C. . D. .
Lời giải
Thể tích khối trịn xoay tạo thành là:
.
Câu 2.
Với
thỏa mãn
A.
C.
Đáp án đúng: B
, khẳng định nào dưới đây đúng?
.
B.
.
D.
.
.
Giải thích chi tiết: Ta có
Câu 3.
Cho hàm số
.
có đồ thị là đường cong trong hình vẽ. Mệnh đề nào sau đây đúng?
A. Điểm cực tiểu của hàm số là
C. Giá trị cực đại của hàm số là
Đáp án đúng: D
.
.
B. Giá trị cực tiểu của hàm số là 1.
D. Điểm cực đại của hàm số là
.
1
Câu 4.
Cho hàm số
liên tục trên
và có đồ thị như hình vẽ bên. Xét hàm số
Tìm
để
A.
Đáp án đúng: A
Giải thích chi tiết:
B.
Hướng dẫn giải. Đặt
Suy ra hàm số
C.
với
D.
Ta có
đồng biến nên
Từ đồ thị hàm số ta có
Câu 5.
Cho
là số thực dương bất kỳ. Mệnh đề nào dưới đây đúng ?
A.
B.
C.
D.
Đáp án đúng: C
Câu 6. Cho tập hợp
. Tập hợp C được viết dưới dạng nào?
A.
.
B.
.
C.
.
D.
.
Đáp án đúng: A
Câu 7. Tìm giá trị thực của tham số m để đường thẳng d : y=( 3 m+1 ) x +3+m vng góc với đường thẳng đi
qua hai điểm cực trị của đồ thị hàm số y=x 3 −3 x 2 −1.
1
1
1
1
A. m= ⋅
B. m=− ⋅
C. m=− ⋅
D. m= ⋅
6
3
6
3
Đáp án đúng: C
Giải thích chi tiết: Xét hàm số y=x 3 −3 x 2 −1
′
2
x =0 ⇒ y=− 1
y =3 x − 6 x=0 ⇔[
x =2 ⇒ y=−5
Đồ thị có 2 điểm cực trị là A ( 0 ; −1 ) , B ( 2; − 5 ) .
Đường thẳng đi qua 2 điểm cực trị là đường thằng AB có phương trình: y=− 2 x −1.
1
Để đường thẳng AB ⊥ d ⇔(3 m+1 ). ( −2 )=−1 ⇔ m=− ⋅
6
Câu 8. Cho số phức
A.
.
Đáp án đúng: A
Giải thích chi tiết:
thỏa mãn
B.
. Tính môđun của
.
C.
.
D.
.
.
2
Câu 9. Xét các số phức
thỏa mãn
. Biết rằng tập hợp tất cả các điểm biểu diễn của số phức
là một đường trịn, bán kính của đường trịn đó bằng
A.
.
Đáp án đúng: C
B.
.
C.
.
D.
.
Giải thích chi tiết: Ta có:
.(*)
Đặt
. Ta có:
.(1)
Phương trình (1) là phương trình đường trịn tâm
Câu 10. Tìm
, bán kính
để phương trình
A.
Đáp án đúng: B
Câu 11.
Cho hàm số bậc ba
B.
có ít nhất một nghiệm thuộc đoạn
C.
D.
có đồ thị như hình vẽ. Số nghiệm của phương trình
A. .
B. .
C. .
Đáp án đúng: D
Câu 12.
Cho đồ thị của hàm số nhất biến như hình vẽ. Hỏi đó là hàm số nào?
A.
.
là
D.
.
B.
3
C.
Đáp án đúng: A
Câu 13.
D.
Cho số phức
A. ¿ w∨¿ √134 .
Đáp án đúng: C
. Môđun của số phức
B. ¿ w∨¿ 3 √ 2.
bằng:
C. ¿ w∨¿ 3 √ 10.
D. ¿ w∨¿ √ 206 .
Giải thích chi tiết:
.
Câu 14. Cho hàm số
A. 1.
Đáp án đúng: B
Câu 15.
có đạo hàm
B. 2.
. Hàm số
có bao nhiêu điểm cực trị?
D. 3.
C. 4.
Hàm số
có đạo hàm
trên khoảng
. Hình vẽ bên là đồ thị của hàm số
trên khoảng
. Hỏi hàm số
có bao nhiêu điểm cực trị?
A. 1..
B. 0..
C. 2..
D. 4.
Đáp án đúng: A
Giải thích chi tiết: Dựa vào đồ thị ta thấy phương trình f ' ( x )=0 chỉ có một nghiệm đơn (cắt trục hồnh tại một
điểm) và hai nghiệm kép (tiếp xúc với trục hoành tại hai điểm) nên f ' ( x ) chỉ đổi dấu khi qua
nghiệm đơn. Do đó suy ra hàm số f ( x ) có đúng một cực trị.
Nhận xét. Đây là một dạng toán suy ngược đồ thị.
Câu 16. Cho số phức
thỏa mãn
A.
.
Đáp án đúng: A
. Tìm mơđun của
B.
.
Giải thích chi tiết: Cho số phức
thỏa mãn
A.
.
Lời giải
. D.
B.
.
C.
C.
.
.
D.
. Tìm mơđun của
.
.
.
.
.
Câu 17. Cho số phức
A.
thỏa mãn
B.
. Số phức liên hợp của
C.
có phần ảo bằng
D.
4
Đáp án đúng: C
Câu 18. Tìm nguyên hàm của hàm số
A.
.
B.
C.
.
Đáp án đúng: D
Câu 19.
D.
Tập nghiệm của phương trình
A.
.
B.
A.
.
Đáp án đúng: C
B.
.
có 2 nghiệm
.
C.
. Giá trị của
.
bằng
D. .
bằng
A.
Cho hàm số
.
D.
Câu 20. Biết rằng phương trình
C.
Đáp án đúng: B
Câu 22.
.
là
C.
.
Đáp án đúng: B
Câu 21.
.
.
.
B.
.
D.
.
có đồ thị là đường cong trong hình vẽ.
5
Có bao nhiêu số dương trong các số
A. 3.
B. 4.
C. 1.
D. 2.
Đáp án đúng: D
Câu 23. Đồ thị hàm số nào trong bốn hàm số liệt kê ở bốn phương án A, B, C, D dưới đây, có đúng một điểm
cực trị?
A.
.
C.
Đáp án đúng: B
.
Giải thích chi tiết: +) Xét hàm số:
B.
.
D.
.
. Tập xác định là:
.
.
.
Do
+) Xét hàm số:
là hàm trùng phương và
. Tập xác định là:
có một nghiệm nên đồ thị hàm số có đúng một điểm cực trị.
.
Hàm số có 2 điểm cực trị.
+) Hàm số
khơng có cực trị.
+) Xét hàm số:
Ta có
Hàm số khơng có điểm cực trị.
Câu 24. Cho hàm số
có đồ thị
. Gọi
là hình phẳng giởi hạn bởi
, trục hồnh và hai đường
thẳng
,
. Thể tích của khối trịn xoay tạo thành khi quay
quanh trục hồnh được tính bởi cơng
thức:
6
A.
B.
C.
Đáp án đúng: D
D.
Giải thích chi tiết:
Câu 25. Phương trình
. Khẳng định nào sau đây là khẳng định đúng?
A. Phương trình có hai nghiệm âm.
B. Phương trình có một nghiệm âm và một nghiệm dương.
C. Phương trình vô nghiệm.
D. Phương trình có hai nghiệm dương.
Đáp án đúng: B
Câu 26. : Gọi x 1 là điểm cực đại, x 2 là điểm cực tiểu của hàm số y=− x 3+3 x +2. Tính x 1+ 2 x 2
A. 0
B. -1
C. 2
D. 1
Đáp án đúng: B
Câu 27. Cho hàm số
có đạo hàm trờn
Giỏ tr ca biu thc
A.
tha món iu kin
,
v
.
bng
.
B.
.
ỵ Dng 09: Nguyên hàm của hs cho bởi nhiều công thức
C.
.
D.
.
Đáp án đúng: C
Giải thích chi tiết:
Lời giải
Từ giả thiết ta có
.
Lấy nguyên hàm hai vế ta được
hay
Ta có
nên thay
vào
.
Như vậy
.
Câu 28.
Một ô tô sau khi chờ hết đèn đỏ đã bắt đầu chuyển động với vận tốc được biểu thị bằng đồ thị là đường cong
Parabol. Biết rằng sau
phút thì xe đạt vận tốc cao nhất là
đầu giảm tốc, đi được
phút thì bắt đầu chuyển động đều (hình vẽ).
và bắt
7
Hỏi quãng đường xe đi được trong
A.
.
Đáp án đúng: A
phút đầu tiên kể từ lúc bắt đầu là bao nhiêu mét?
B.
.
Giải thích chi tiết: Vận tốc của xe đi được
C.
.
D.
.
phút đầu tiên là Parabol có phương trình là
Theo bài ra ta có
Vậy
Từ phút thứ 6 đến phút thứ
.
vận tốc của xe có phương trình
Qng đường xe đi được trong
phút đầu tiên là
Câu 29.
Cho hàm số có bảng biến thiên như sau
.
Tổng các giá trị nguyên của m để đường thẳng y=m cắt đồ thị hàm số tại ba điểm phân biệt bằng
A. −1.
B. −13.
C. 0 .
D. −12.
Đáp án đúng: D
Câu 30. Cho a,b là hai số thực dương. Tìm x biết
A.
Đáp án đúng: C
B.
C.
D.
8
Câu 31. Gọi
là hình phẳng giới hạn bởi các đường
xoay tạo thành khi quay
quanh trục
bằng:
,
,
và
. Thể tích của khối trịn
A.
.
B.
.
C.
.
D.
.
Đáp án đúng: B
Câu 32. Trường đồn viên có giá trị là có hoặc khơng, nên chọn kiểu dữ liệu nào cho phù hợp?
A. Text
B. Number
C. Yes/No
D. Date/time
Đáp án đúng: C
Câu 33. Cho hàm số
Gọi
là tổng tất cả các giá trị của tham số
đạt giá trị lớn nhất trên đoạn
đây?
A.
Đáp án đúng: D
B.
bằng
C.
Giải thích chi tiết: Xét hàm số
Tổng
để hàm số
thuộc khoảng nào sau
D.
có
Xét hàm số
có
☞ Với
☞ Với
Tại
với
.
; tại
Khi đó
Mà
Vậy tổng các giá trị của
là
Câu 34. Tính diện tích hình phẳng giới hạn bởi hai đồ thị hàm số
A. .
Đáp án đúng: D
B.
.
C.
;
.
Giải thích chi tiết: Tọa đợ giao điểm của đồ thị hàm số
và trục hoành.
D.
.
với trục hoành là nghiệm của hệ
.
Tọa độ giao điểm của đường thẳng
với trục hoành là:
.
9
Tọa độ giao điểm của đồ thị hàm số
và đường thẳng
là nghiệm của hệ
.
Diện tích hình phẳng cần tìm là
.
Câu 35. Một người gửi số tiền 100 triệu đồng vào một ngân hàng với lãi suất 7%/năm. Biết rằng nếu khơng rút
tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền sẽ được nhập vào vốn ban đầu ( người ta gọi đó là lãi kép).
Để người đó lãnh được số tiền 250 triệu thì người đó cần gửi trong khoảng thời gian bao nhiêu năm ? ( nếu
trong khoảng thời gian này không rút tiền ra và lãi suất không thay đổi )
A. 15 năm
B. 14 năm
C. 12 năm
D. 13 năm
Đáp án đúng: B
Giải thích chi tiết: chọn C
Ta có:
người đó lãnh được số tiền 250 triệu thì người đó cần gửi trong khoảng thời gian gần 14 năm
----HẾT---
10