ĐỀ MẪU CĨ ĐÁP ÁN
ƠN TẬP GIẢI TÍCH
TỐN 12
Thời gian làm bài: 40 phút (Không kể thời gian giao đề)
-------------------------
Họ tên thí sinh: .................................................................
Số báo danh: ......................................................................
Mã Đề: 028.
Câu 1. Tìm số nguyên dương n sao cho
A.
.
Đáp án đúng: C
Giải
B.
.
Câu 2. Trên khoảng
hàm số
thích
Câu 3. Cho hình phẳng
.
C.
.
B. Có giá trị lớn nhất là
quay quanh trục
, trục
, đường thẳng
.
.
. Thể tích
tính bởi cơng thức nào sau đây?
B.
.
.
tiết:
D. Có giá trị nhỏ nhất là
giới hạn bởi
khối tròn xoay tạo thành khi cho
D.
chi
.
C. Có giá trị lớn nhất là
Đáp án đúng: C
.
.
A. Có giá trị nhỏ nhất là
A.
C.
D.
.
.
1
Đáp án đúng: C
Câu 4. Có bao nhiêu giá trị nguyên của tham số
biến trên khoảng
để hàm số
đồng
?
A. .
Đáp án đúng: C
B.
Câu 5. Cho phương trình
phương trình đã cho?
A. 4.
Đáp án đúng: B
Câu 6.
Cho hàm số
thuộc đoạn
.
C.
.
D.
.
. Có bao nhiêu số nguyên dương nhỏ hơn nghiệm của
B. 2.
C. 1.
D. 3.
có đồ thị như hình bên. Hỏi có bao nhiêu điểm trên đường trịn lượng giác biểu diễn
nghiệm của phương trình
?
A. điểm.
Đáp án đúng: B
Giải thích chi tiết:
B.
điểm.
Hướng dẫn giải. Dựa vào đồ thị ta thấy khi
Do đó nếu đặt
thì
C.
điểm.
D. Vơ số.
thì
khi đó
Dựa vào đơ thị, ta có
Câu 7. Họ ngun hàm của hàm số
A.
C.
Đáp án đúng: A
là
.
B.
.
D.
Giải thích chi tiết: Họ nguyên hàm của hàm số
A.
.
B.
.
.
là
.
2
C.
Lời giải
.
D.
.
Ta có:
.
Câu 8. Trong khơng gian
A. .
Đáp án đúng: B
cho hai véctơ
B.
và
.
, góc giữa hai vectơ đã cho bằng
C.
.
D.
.
Giải thích chi tiết:
.
3
2
Câu 9. Số điểm chung của hai đồ thị hàm số y=x +3 x −5 x +1 và y=x +1 là bao nhiêu?
A. 1 điểm chung.
B. 4 điểm chung.
C. 2 điểm chung.
D. 3 điểm chung.
Đáp án đúng: C
Câu 10. Với
đặt
, khi đó
A.
.
Đáp án đúng: D
B.
Giải thích chi tiết: Với
A.
. B.
Lời giải
. C.
.
đặt
. D.
bằng
C.
, khi đó
D.
.
bằng
.
Ta có
.
Khi đó
.
Vậy
Câu 11.
.
Tìm giá trị nhỏ nhất
của hàm số
trên đoạn
A.
.
B.
C.
Đáp án đúng: D
D.
Câu 12. Tìm tập xác định của hàm số
A.
.
.
C.
Đáp án đúng: A
.
B.
.
D.
.
.
3
Giải thích chi tiết: Tìm tập xác định của hàm số
A.
. B.
C.
Lời giải
. D.
.
.
.
Điều kiện:
.
Hàm số đã cho xác định
.
Vậy tập xác định của hàm số là
Câu 13.
Cho hàm số
.
(với
,
,
) có đồ thị là
. Biết đồ thị của hàm số
như hình vẽ dưới
Biết đồ thị
cắt trục tung tại điểm có tung độ bằng
hồnh có phương trình là
A.
C.
Đáp án đúng: D
B.
.
.
D.
.
Từ đồ thị của hàm số
với trục
.
cắt trục tung tại điểm có tung độ bằng
+ Đồ thị hàm số
tại giao điểm của
.
Giải thích chi tiết: Ta có
Đồ thị
. Tiếp tuyến của
nên
.
ta có:
có tiệm cận đứng là đường thẳng
nên
.
4
+ Đồ thị hàm số
đi qua điểm
nên
+ Đồ thị hàm số
cắt trục tung tại điểm
.
nên
.
Ta có hệ phương trình
.
Suy ra
và
Giao điểm của đồ thị
.
với trục hồnh là
Hệ số góc của tiếp tuyến tại điểm
là
.
Vậy phương trình tiếp tuyến là
.
Câu 14. Tìm tất cả các giá trị nguyên của của tham số
một nghiệm thực.
để phương trình
A. .
Đáp án đúng: A
C. .
B.
.
D.
Câu 15. Tính thể tích
của phần vật thể giới hạn bởi hai mặt phẳng
bởi mặt phẳng vng góc với trục
tại điểm có hồnh độ bất kì (
vng có độ dài cạnh là
có ít nhất
và
, biết rằng khi cắt vật thể
) thì được thiết diện là một hình
.
A.
.
Đáp án đúng: C
B.
.
C.
.
D.
Giải thích chi tiết: Tính thể tích
của phần vật thể giới hạn bởi hai mặt phẳng
cắt vật thể bởi mặt phẳng vuông góc với trục
tại điểm có hồnh độ bất kì (
một hình vng có độ dài cạnh là
A.
. B.
Lời giải
. C.
. D.
.
và
, biết rằng khi
) thì được thiết diện là
.
.
Diện tích thiết diện tạo ra khi cắt vật thể bởi mặt phẳng vng góc với trục
) là
.
tại điểm có hồnh độ
bất kì (
nên thể tích vật thể là
5
Câu 16.
Hàm số nào sau đây có đồ thị như hình vẽ?
A.
.
B.
.
C.
.
D.
Đáp án đúng: B
Giải thích chi tiết: Hàm số nào sau đây có đồ thị như hình vẽ?
A.
Lời giải
. B.
. C.
.
. D.
Dựa vào đồ thị hàm số suy ra hàm số có dạng
.
. Xét hàm số
có
. Ta có
nên đồ thị chỉ có một điểm cực trị. Xét hàm số
có
. Ta có
nên đồ thị hàm số có 3 điểm cực trị.
Vậy hàm số có đồ thị như hình vẽ là
Câu 17.
Cho hàm số
.
có đồ thị như hình vẽ.Diện tích hình phẳng phần tơ đậm trong hình là
A.
C.
Đáp án đúng: D
với
.
.
B.
.
D.
.
Câu 18. Tính đạo hạm của hàm số
6
A.
.
C.
Đáp án đúng: D
Giải thích chi tiết:
B.
.
.
D.
.
Ta có:
Câu 19. Cho hàm số
và
với
,
có hai giá trị cực trị là
và
B.
C.
. Diện tích hình phẳng giới hạn bởi các đường
.
.
Giải thích chi tiết: Cho hàm số
với
có hai giá trị cực trị là
A.
. B.
Lời giải
. C.
là các số thực. Biết hàm số
bằng
A.
.
Đáp án đúng: A
và
,
và
D.
,
,
.
là các số thực. Biết hàm số
. Diện tích hình phẳng giới hạn bởi các đường
bằng
. D.
.
Xét hàm số
Ta có
.
Theo giả thiết ta có phương trình
có hai nghiệm
Xét phương trình
Diện tích hình phẳng cần tính là:
,
và
.
.
.
Câu 20.
Cho đồ thị hàm số
. Diện tích
của hình phẳng là
7
A.
.
C.
Đáp án đúng: B
Câu 21. Với
.
của biểu thức
A.
B.
Lời giải
C.
là số nguyên dương thỏa mãn
trong khai triển của biểu
D.
, số hạng khơng chứa
trong khai triển
bằng
C.
D.
thì ta có:
=
Để có số hạng khơng chứa
thì
Do đó hệ số của số hạng khơng chứa
Câu 22. Tìm tất cả các giá trị thực của
biệt.
A.
.
, số hạng khơng chứa
B.
Giải thích chi tiết: Với
.
D.
là số ngun dương thỏa mãn
thức
bằng
A.
Đáp án đúng: D
Ta có:
Với
B.
.
B.
.
trong khai triển là:
.
để phương trình
.
C.
có đúng
.
D.
nghiệm thực phân
.
8
Đáp án đúng: D
Câu 23. Cho
. Tính
A.
.
Đáp án đúng: D
B.
Câu 24. Cho
.
.
C.
. Tính
.
D.
.
.
A.
.
B.
.
C.
.
D.
.
Đáp án đúng: B
Câu 25. Số giao điểm nhiều nhất của đồ thị hàm số y=x 4 + 2 x 2 +1 với đường thẳng y=m (với mlà tham số ) là
bao nhiêu ?
A. 0.
B. 4.
C. 3.
D. 2.
Đáp án đúng: D
Câu 26. Tính
A.
,kết quả là
.
B.
C.
.
D.
.
Đáp án đúng: D
Câu 27.
Cho hàm số bậc ba y=f ( x )có đồ thị như hình vẽ . Đồ thị hàm số có mấy điểm cực trị?
A. 1.
Đáp án đúng: B
Câu 28.
B. 2.
C. 0 .
Giá trị nhỏ nhất của hàm số
A.
.
Đáp án đúng: C
D. 3.
trên đoạn
B.
.
C.
bằng
.
D.
.
9
Câu 29. Phương trình
có tập nghiệm là
A.
B.
C.
Đáp án đúng: B
Giải
D.
thích
chi
Câu 30. Diện tích của hình phẳng giới hạn bởi đồ thị hai hàm số
A.
.
Đáp án đúng: D
Câu 31.
B.
Cho hàm số
.
C.
là:
.
D.
B.
C.
Đáp án đúng: C
Câu 32. Chọn mệnh đề đúng?
D.
A.
C.
Đáp án đúng: D
Câu 33. Gọi
.
B.
.
.
D.
.
là hai nghiệm phức của phương trình
A.
.
Đáp án đúng: A
B.
Giải thích chi tiết: Gọi
B.
.
.Tính
C.
.
.
D.
là hai nghiệm phức của phương trình
.
C.
Áp dụng định lí Vi-ét, ta có:
Câu 34. Cho
và
. Trong các khẳng định sau, khẳng định nào đúng?
A.
A.
.
Lời giải
tiết:
.
D.
.Tính
.
.
.
.
, trong đó
là phân số tối giản. Tính
.
10
A.
.
B.
.
C.
.
Đáp án đúng: D
Câu 35.
Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ?
A.
C.
Đáp án đúng: D
.
.
D.
B.
.
D.
.
.
----HẾT---
11