ĐỀ MẪU CĨ ĐÁP ÁN
ƠN TẬP KIẾN THỨC
TỐN 12
Thời gian làm bài: 40 phút (Không kể thời gian giao đề)
-------------------------
Họ tên thí sinh: .................................................................
Số báo danh: ......................................................................
Mã Đề: 071.
Câu 1. Cho hàm số
có đạo hàm khơng âm trên
Biết
A.
Đáp án đúng: C
Giải thích chi tiết:
Lời giải.
thỏa mãn
với mọi
và
hãy chọn khẳng định đúng trong các khẳng định sau đây.
B.
C.
D.
Từ giả thiết ta có
Câu 2. Tính thể tích của khới nón có đường kính đáy bằng
A.
Đáp án đúng: A
B.
Câu 3. Cho biết
. Mệnh đề nào dưới đây là đúng?
A.
C.
.
B.
,
và
là hằng số thỏa mãn
.
D.
Giải thích chi tiết: Đặt
.
D.
, trong đó
C.
.
Đáp án đúng: B
.
.
Ta có:
Đặt
và chiều cao bằng
.
, suy ra
1
.
Vậy
Suy ra
.
,
.
Mặt khác
.
Vậy
.
Câu 4. Trong các số phức sau, số phức nào có modul bằng 5?
A.
.
Đáp án đúng: A
B.
.
Giải thích chi tiết: Ta có:
Câu 5. Biết rằng
A.
.
Đáp án đúng: B
C.
.
D.
.
.
là một nguyên hàm của
B.
.
Câu 6. Biết rằng hàm số
và
, tính
C. .
.
D. .
đạt giá trị nhỏ nhất trên đoạn
tại
. Tính
.
A.
.
Đáp án đúng: D
Câu 7.
Cho hàm số
B.
.
C.
.
D.
.
có bảng biến thiên như sau
Số nghiệm thuộc đoạn
A.
Đáp án đúng: D
Giải thích chi tiết: Đặt
Phương trình tương đương
của phương trình
B.
là
C.
và một nghiệm
D.
thì cho một nghiệm
.
.
2
Vậy phương trình có
nghiệm thuộc đoạn
Câu 8. Đường thẳng
.
là tiệm cận ngang của đồ thị hàm số nào sau đây?
A.
Đáp án đúng: A
B.
C.
D.
Câu 9. Thể tích khối trịn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường
hồnh bằng?
và trục
A.
B.
C.
D.
Đáp án đúng: A
Giải thích chi tiết: Thể tích khối trịn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường
và trục hồnh bằng?
A.
B.
Lời giải
C.
D.
Có
Câu 10. Cho khối nón có bán kính đáy r =4 a và độ dài đường sinh l=5 a . Khi đó chiều cao h bằng
A. 4 a.
B. 3 a .
C. 10 a.
D. 8 a .
Đáp án đúng: A
Câu 11. Cho hình chóp
có đáy
là hình chữ nhật, tam giác
trong mặt phẳng vng góc với đáy, biết khoảng cách giữa hai đường thẳng
vuông cân tại
và nằm
và
bằng
và
. Thể tích của khối chóp đã cho bằng
A.
.
Đáp án đúng: A
Giải thích chi tiết:
Lời giải
B.
.
C.
.
D.
.
3
4
------ HẾT -----Câu 12.
. Cho hai số phức
A.
và
. Số phức
bằng
.
B.
C.
.
Đáp án đúng: D
D.
.
.
Câu 13. Cho hình chóp
có
,
,
, hình chiếu của đỉnh
là một điểm
nằm trong
. Biết khoảng cách giữa các cặp đường thẳng chéo nhau của hình chóp là
,
A.
.
Đáp án đúng: A
Giải thích chi tiết: Cách 1
,
B.
.
. Tính thể tích khối chóp
C.
.
D.
.
.
5
vng tại
Vẽ
hành;
sao cho
,
,
là hình chữ nhật và
là các đường trung bình của
;
;
;
là các hình bình
Ta có:
Lại có:
Tương tự ta tính được:
và
Gọi
,
,
lần lượt là hình chiếu của
Ta có:
lên
,
,
và đặt
và
Chứng minh tương tự:
;
Do đó:
Mặt khác:
;
;
;
;
;
Ta lại có:
Mà
Vậy thể tích khối chóp
Cách 2
là
.
6
Từ
.
và
lần lượt kẻ các đường thẳng song song với
Từ
kẻ đường thẳng song song với
cắt
và
lần lượt tại
và
.
Từ
kẻ đường thẳng song song với
cắt
và
lần lượt tại
và
.
Từ
kẻ đường thẳng
Gọi
Đặt
Kéo dài
Gọi
song song với
và
, đường thẳng qua
cắt nhau tại
vng góc với
, ta có hình chữ nhật
cắt
tại
.
.
,
. Ta có
cắt
tại
, từ
.
kẻ đường thẳng vng góc với
là chân đường cao kẻ từ đỉnh
của tam giác
, suy ra
tại
. Ta có:
.
7
Hai tam giác
và
đồng dạng nên:
.
Ta có hệ:
.
.
Câu 14. Cho mặt cầu
tuyến của mặt phẳng
A.
và mặt phẳng
với mặt cầu
. Biết khoảng cách từ
C.
.
Đáp án đúng: B
B.
.
D.
.
Câu 15. Trong các hình trụ có diện tích tồn phần bằng
B.
bằng
. Nếu
thì giao
là đường trịn có bán kính bằng bao nhiêu?
.
A.
.
Đáp án đúng: A
tới
.
thì hình trụ có thể tích lớn nhất là bao nhiêu
C.
.
D.
.
Giải thích chi tiết: Ta có
8
Vậy thể tích khối trụ
Ta có:
Bảng biến thiên
Từ bảng biến thiên ta có
Câu 16.
Có tấm bìa hình tam giác vng cân
có cạnh huyền
bằng Người ta muốn cắt tấm bìa đó thành hình
chữ nhật
rồi cuộn lại thành một hình trụ khơng đáy như hình vẽ. Diện tích hình chữ nhật đó bằng bao
nhiêu để diện tích xung quanh của hình trụ là lớn nhất ?
A.
Đáp án đúng: B
Giải thích chi tiết:
Lời giải.
Kẻ đường cao
cắt
Tam giác
B.
tại
C.
D.
như hình vẽ.
vng cân nên
9
Đặt
Suy ra
Chu vi đáy hình trụ bằng
Do đó
Dấu
xảy ra
Khi đó
Nhận xét: Diện tích xung quanh của hình trụ chính là diện tích của hình chữ nhật.
Câu 17. Cho mặt cầu
A.
có diện tích
. Khi đó thể tích của khối cầu
.
B.
C.
.
Đáp án đúng: A
Câu 18.
D.
Một khu vườn hình bán nguyệt có bán kính
parabol có phương trình
400000
dưới đây?
là
.
.
m, ở giữa khu vườn người ta muốn tạo một cái bể cá dạng
(như hình vẽ), phần cịn lại sẽ trồng hoa. Biết chi phí xây bể cá là
, chi phí trồng hoa là 200000
A. 6220485 đồng.
C. 6240841 đồng.
Đáp án đúng: D
Giải thích chi tiết: Phương trình hồnh độ giao điểm:
. Chi phí xây dựng khu vườn gần nhất với số tiền nào
B. 6250184 đồng.
D. 6240184 đồng.
.
Diện tích bể cá:
10
.
Diện tích trồng hoa:
.
Chi phí xây dựng:
đồng.
Câu 19. Cho
. Khi đó
A. .
Đáp án đúng: A
Câu 20. Gọi
B.
. Tính
C.
B.
Giải thích chi tiết: Gọi
. D.
.
. Tính
có nghiệm phức
.
D.
.
để phương trình
có
.
.
.
, phương trình có các nghiệm
.
Khi đó
Với
.
để phương trình
C.
Phương trình đã cho tương đương
Với
D.
là tổng bình phương tất cả các số thực
thỏa mãn
. C.
.
.
A. .
Đáp án đúng: C
A. . B.
Lời giải
.
là tổng bình phương tất cả các số thực
thỏa mãn
nghiệm phức
bằng
.
, phương trình có nghiệm
.
Khi đó
.
Từ đó suy ra
.
Câu 21. Cho khối chóp
có đáy
là tam giác vuông tại , biết
tam giác đều và nằm trong mặt phẳng vng góc với đáy. Thể tích khối chóp đã cho bằng
A.
.
Đáp án đúng: C
B.
.
C.
.
D.
. Mặt bên
là
.
Giải thích chi tiết: Cho khối chóp
có đáy
là tam giác vng tại , biết
bên
là tam giác đều và nằm trong mặt phẳng vng góc với đáy. Thể tích khối chóp đã cho bằng
. Mặt
11
A.
. B.
Lời giải
Gọi
. C.
. D.
.
là đường cao của tam giác
với đáy nên
là tam giác đều và nằm trong mặt phẳng vng góc
là chiều cao của khối chóp.
Vì tam giác
Do đáy
. Do mặt bên
đều cạnh
.
là tam giác vuông tại
nên đáy
.
Vậy thể tích của khối chóp là
.
Câu 22. Đồ thị hàm số
cắt trục
A.
.
Đáp án đúng: C
B.
.
Giải thích chi tiết: Đồ thị hàm số
Câu 23. Tính
C.
cắt trục
.
tại điểm
D.
.
.
là:
A.
B.
C.
Đáp án đúng: B
D.
Câu 24. Mơ – đun của số phức
A. .
Đáp án đúng: A
tại điểm?
?
B.
.
C.
.
D. .
Giải thích chi tiết:
Câu 25. Thể tích khối cầu có bán kính r là:
A.
Đáp án đúng: C
Câu 26.
B.
C.
D.
12
Cho hàm số
nhận giá trị khơng âm và có đạo hàm liên tục trên
và
A.
. Giá trị của tích phân
.
B.
C.
.
Đáp án đúng: B
thỏa mãn
bằng
.
D.
.
Giải thích chi tiết:
Vậy
.
Do
. Vậy
.
.
Đặt
Câu 27.
. Suy ra
Cho hàm số
. Trong các khẳng định sau, khẳng định nào đúng?
A.
.
C.
Đáp án đúng: D
Giải thích chi tiết:
Câu
28.
Trong
.
khơng
gian
với
hệ
B.
.
D.
.
tọa
độ
,
cho
ln chứa một đường thẳng
mặt
phẳng
cố định khi
:
thay đổi.
13
Đường thẳng
đi qua
vng góc với
. Tính
và cách
một khoảng lớn nhất có véc tơ chỉ phương
.
A.
Đáp án đúng: D
Giải thích chi tiết: Ta có
B.
C.
D.
.
Cho
ta có mặt phẳng
Cho
ta có mặt phẳng
Suy ra đường thẳng
Gọi
.
có một véc tơ pháp tuyến là
có một véc tơ chỉ phương là
là hình chiếu của
cách
có một véc tơ pháp tuyến là
trên
.
.
. Ta có
.
một khoảng lớn nhất khi và chỉ khi
, khi đó
có một véc tơ chỉ phương là
.
Vậy
,
suy ra
.
Câu 29. Số phức liên hợp của
là
A.
.
B.
.
C.
.
Đáp án đúng: A
Câu 30. Cho là số thực dương bất kì. Mệnh đề nào sau đây đúng?
A.
.
B.
D.
.
.
C.
.
D.
.
Đáp án đúng: B
Giải thích chi tiết: Cho là số thực dương bất kì. Mệnh đề nào sau đây đúng?
A.
. B.
C.
Lời giải
Với
.
. D.
và
.
dương thì
Vậy
.
Câu 31. Đạo hàm của hàm số
là
A.
B.
C.
Đáp án đúng: C
D.
Giải thích chi tiết: Đạo hàm của hàm số
A.
là
B.
14
C.
Lời giải
D.
Ta có
.
Câu 32. Tính đạo hàm của hàm số
A.
.
.
B.
C.
.
Đáp án đúng: A
Câu 33.
D.
Trong không gian
, cho hai điểm
.
.
,
. Phương trình mặt cầu đường kính
là
A.
.
C.
Đáp án đúng: D
.
Câu 34. Có bao nhiêu số phức
A.
Đáp án đúng: D
Câu 35.
Diện tích
B.
D.
thỏa mãn
C.
của mặt cầu bán kính
B.
.
B.
lên mặt phẳng
B.
.
C.
, cho mặt phẳng
.
D.
.
. Hình chiếu vng góc của
có tọa độ là
. C.
.
D.
có vectơ pháp tuyến là
Gọi
. Hình chiếu vng góc của điểm
có tọa độ là
Giải thích chi tiết: Trong khơng gian
A.
.
Lời giải
.
, cho mặt phẳng
lên mặt phẳng
điểm
.
D.
Câu 36. Trong không gian
A.
.
Đáp án đúng: A
D.
được tính theo cơng thức nào dưới đây?
.
C.
Đáp án đúng: C
.
và
B.
A.
.
là hình chiếu của điểm
lên mặt phẳng
.
.
. Khi đó:
15
Giải hệ trên ta có:
;
;
Câu 37. Cho khối chóp
hay
có
và
lần lượt là hình chiếu vng góc của
bằng
B.
.
mặt phẳng đáy. Gọi
và mặt phẳng
. Góc giữa mặt phẳng
. C.
.
và mặt phẳng
bằng
. D.
D.
. Có
lần lượt là hình chiếu vng góc của
.
và
trên
vng góc với
và
. Góc giữa mặt phẳng
. Thể tích của khối chóp đã cho bằng
.
+ Ta có:
Mà
và
C.
Giải thích chi tiết: [Mức độ 3] Cho khối chóp
+ Gọi
trên
vng góc với mặt phẳng đáy. Gọi
. Thể tích của khối chóp đã cho bằng
A.
.
Đáp án đúng: C
A.
. B.
Lời giải
.
.
là điểm đối xứng với
qua
(với
là tâm đường tròn ngoại tiếp tam giác
)
và
.
16
Do đó
+ Ta có:
.
+ Ta có:
+ Xét tam giác vng
Câu 38.
ta có:
.
Trong khơng gian
, đường thẳng
vectơ chỉ phương có phương trình là
A.
C.
Đáp án đúng: A
đi qua
nhận vectơ
.
B.
.
.
D.
.
Giải thích chi tiết: Đường thẳng
đi qua
làm
nhận vectơ
làm vectơ chỉ
phương có phương trình là
Câu 39. Biết rằng phương trình
A.
.
B.
Đáp án đúng: D
.
Câu 40. Tính tích phân
A.
C.
Đáp án đúng: D
có hai nghiệm là
C. .
,
. Khi đó
bằng
D. .
, ta được
.
B.
.
D.
.
.
17
Giải thích chi tiết: Đặt
=
----HẾT---
.
18