ĐỀ MẪU CĨ ĐÁP ÁN
ƠN TẬP KIẾN THỨC
TỐN 12
Thời gian làm bài: 40 phút (Không kể thời gian giao đề)
-------------------------
Họ tên thí sinh: .................................................................
Số báo danh: ......................................................................
Mã Đề: 088.
Câu 1.
Cho hình trụ có diện tích xung quang bằng
trụ bằng:
A.
.
Đáp án đúng: A
Câu 2.
Biết
B.
và bán kính đáy bằng
.
C.
là một nguyên hàm của
A.
. Độ dài đường sinh của hình
.
D.
và
.
. Chọn khẳng định đúng.
.
B.
.
C.
.
D.
Đáp án đúng: D
.
Câu 3. Họ nguyên hàm của hàm số
A.
.
Đáp án đúng: B
là
B.
.
C.
Giải thích chi tiết: Họ nguyên hàm của hàm số
A.
.
Lời giải
B.
. C.
.
.
D.
.
là
D.
.
.
Sử dụng mtct : đạo hàm đáp án, và calc đầu bài tại 2.
Câu 4.
Phương trình
A. .
Đáp án đúng: B
Giải thích chi tiết: Ta có
có hai nghiệm
B.
.
,
. Tính
C.
.
.
D.
.
.
1
Áp dụng Vi-ét suy ra phương trình đã cho có hai nghiệm
Câu 5. Trong khơng gian
A.
,
thì
.
véc tơ nào dưới đây là một VTCP của đường thẳng
.
B.
C.
.
Đáp án đúng: D
.
D.
.
Câu 6. Một cơng ty chun sản xuất chậu trồng cây có dạng hình trụ khơng có nắp, chậu có thể tích
Biết giá vật liệu làm
mặt xung quanh chậu là
đồng, để làm
tiền ít nhất để mua vật liệu làm một chậu gần nhất với số nào dưới đây?
A.
đồng.
B.
đáy chậu là
.
đồng. Số
đồng.
C.
đồng.
D.
đồng.
Đáp án đúng: C
Giải thích chi tiết: Một cơng ty chun sản xuất chậu trồng cây có dạng hình trụ khơng có nắp, chậu có thể tích
. Biết giá vật liệu làm
mặt xung quanh chậu là
đồng, để làm
đồng. Số tiền ít nhất để mua vật liệu làm một chậu gần nhất với số nào dưới đây?
A.
Lời giải
Gọi
đồng.
,
B.
đồng.
C.
đồng.
D.
đáy chậu là
đồng.
lần lượt là bán kính và chiều cao của chậu hình trụ.
Vì thể tích chậu bằng
nên
.
Diện tích xung quanh của chậu là
nên số tiền mua vật liệu để làm mặt xung quanh là
(đồng).
Diện tích đáy của chậu là
(đồng).
Số
tiền
mua
nên số tiền mua vật liệu để làm đáy chậu là
vật
hay
Câu 7.
liệu
một
cái
chậu
là
.
Một biển quảng cáo có dạng hình elip với bốn đỉnh
đậm là
đồng/
và phần cịn lại là
số tiền nào dưới đây, biết
làm
,
,
,
đồng/
và tứ giác
,
như hình vẽ bên. Biết chi phí sơn phần tơ
. Hỏi số tiền để sơn theo cách trên gần nhất với
là hình chữ nhật có
2
A.
đồng.
B.
đồng.
C.
đồng.
Đáp án đúng: A
D.
đồng.
Giải thích chi tiết:
Giả sử phương trình elip
.
Theo giả thiết ta có
Diện tích của elip
.
là
Ta có:
.
với
và
Khi đó, diện tích phần khơng tơ màu là
Diện tích phần tơ màu là
Số tiền để sơn theo yêu cầu bài toán là:
.
.
.
đồng.
Câu 8. Cho hình lập phương có độ dài đường chéo của một mặt bằng
. Tính thể tích khối lập phương đó.
A.
.
B.
.
C. .
D.
.
Đáp án đúng: B
Giải thích chi tiết: Cho hình lập phương có độ dài đường chéo của một mặt bằng . Tính thể tích khối lập
phương đó.
A.
. B.
. C.
. D.
.
3
Lời giải
Do
là hình lập phương nên
hình vng có đường chéo bằng
suy ra
.
.
Câu 9. Tính diện tích
của hình phẳng giới hạn bởi các đường
A.
.
Đáp án đúng: A
B.
.
C.
Câu 10. Điểm cực đại của đồ thị hàm số
A.
.
Đáp án đúng: D
B.
Câu 11. Cho số phức
thức
C.
. Gọi
. Giá trị của
A.
.
Đáp án đúng: D
B.
. Giá trị của
Đặt
Vì
C.
nên
nên
.
.
D.
.
D.
.
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu
C.
của biểu thức
.
và
.
thỏa mãn
B.
,
bằng
Giải thích chi tiết: Cho số phức
A.
.
Lời giải
.
,
.
.
thỏa mãn
,
.
D.
. Gọi
.
và
D.
.
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất
bằng
.
.
. Do đó, ta có:
.
Ta lại có
.
4
Suy ra
.
Vậy
, với
. Dễ thấy
Ta có
.
.
Do đó
Ta có:
liên tục trên đoạn
,
,
,
Vậy giá trị lớn nhất của
Khi đó
,
là
.
; giá trị nhỏ nhất của
là
.
.
Câu 12. Tính
A.
.
.
.
C.
.
Đáp án đúng: C
Câu 13. Số phức
A.
.
Đáp án đúng: D
B.
.
D.
.
có mơđun ?
B.
.
C.
.
D.
.
Giải thích chi tiết:
Câu 14. : Cắt một khối trụ bởi một mặt phẳng qua trục của nó, ta được thiết diện là một hình vng có cạnh
bằng 2a. Diện tích tồn phần của khối trụ là:
A.
Đáp án đúng: D
Câu 15. Trong không gian
A.
.
Đáp án đúng: C
B.
C.
, phương trinh của mặt phẳng
B.
.
C.
Câu 16. Tìm số nghiệm của phương trình
A. .
Đáp án đúng: B
D.
B. .
Giải thích chi tiết: Tìm số nghiệm của phương trình
là:
.
D.
.
.
C. .
D. .
.
5
A. . B. . C. . D. .
Lời giải
Điều kiện:
Ta có:
Vậy
. Vậy phương trình có nghiệm.
Câu 17. :Với các số thực a,b,a′,b′ và xét hai số phức z=a+bi,z′=a′+b′i. Hai số phức này bằng nhau khi và chỉ
khi?
A.
Đáp án đúng: D
Câu 18.
B.
C.
D.
Cho hàm số
có đồ thị là đường cong trong hình bên. Diện tích hình phẳng gạch chéo được tính theo
cơng thức nào dưới đây
A.
C.
Đáp án đúng: A
.
B.
.
D.
.
.
Giải thích chi tiết: Cho hàm số
có đồ thị là đường cong trong hình bên. Diện tích hình phẳng gạch
chéo được tính theo cơng thức nào dưới đây
6
A.
Lời giải
. B.
. C.
Dựa vào đồ thị:
. D.
.
Câu 19. Cho hàm số thỏa mãn
nguyên hàm
.
,
;
. Tìm họ các
.
A.
.
C.
Đáp án đúng: D
Giải thích chi tiết: Tacó:
.
B.
.
D.
.
,
.
Mà
.
Câu 20. Cho lăng trụ
trùng với trung điểm
lăng trụ đã cho bằng
A.
.
Đáp án đúng: D
có đáy là tam giác đều cạnh
của
B.
. Góc tạo bởi cạnh bên
.
C. .
. Hình chiếu vng góc của
với mặt đáy bằng
lên mặt phẳng
. Thể tích của khối
D. .
7
Giải thích chi tiết: Cho lăng trụ
có đáy là tam giác đều cạnh
mặt phẳng
trùng với trung điểm
của khối lăng trụ đã cho bằng
A.
. B. . C.
Lời giải
của
. Hình chiếu vng góc của
. Góc tạo bởi cạnh bên
với mặt đáy bằng
lên
. Thể tích
. D. .
Chiều cao của lăng trụ là
.
;
là tam giác vng cân tại
.
(đvtt).
Câu 21. Cho khối nón có bán kính đường trịn đáy bằng 2 và diện tích xung quanh bằng
khối nón là:
A.
Đáp án đúng: D
Câu 22.
B. 4
Cho hàm số
C.
. Chiều cao h của
D.
có bản biến thiên như sau:
Hỏi hàm số đã cho là hàm số nào dưới đây?
A.
C.
Đáp án đúng: D
Câu 23.
.
.
B.
.
D.
.
8
Cho hình chóp
cân tại
với đáy
,
là hình chữ nhật tâm
. Biết góc giữa
,
và
,
bằng
. Thể tích khối chóp
là:
A.
B.
C.
Đáp án đúng: C
D.
Câu 24. Cho số phức
thỏa mãn
A.
.
Đáp án đúng: A
. Môđun của số phức
B. .
Giải thích chi tiết: Cho số phức
A. . B. . C.
Lời giải
bằng
C. .
thỏa mãn
D. .
. Môđun của số phức
bằng
.D. .
Ta có :
.
Câu 25. Cho hàm số
, gọi d là tiếp tuyến với đồ thị hàm số tại điểm có hồnh độ bằng
đường thẳng d cắt tiệm cận đứng của đồ thị hàm số tại điểm
tại điểm
. Gọi S là tập hợp các số m sao cho
A. 9
B. 10
Đáp án đúng: B
Giải thích chi tiết: Gọi
. Biết
và cắt tiệm cận ngang của đồ thị hàm số
C. 0
. Tính tổng bình phương các phần từ của S.
D. 4
nên phương trình tiếp tuyến của
tại M là
(d)
• Tiếp tuyến d cắt TCĐ:
tại
• Tiếp tuyến d cắt TCN:
tại
Theo bài ra, ta có
.
Câu 26. Cho số phức
A.
C.
.
.
thỏa mãn
. Tìm giá trị lớn nhất
B.
D.
của
.
.
9
Đáp án đúng: D
Giải thích chi tiết: Gọi
,
. Ta thấy
là trung điểm của
.
.
Ta lại có:
.
Mà
Dấu
.
xảy ra khi
, với
;
.
.
Câu 27.
Cho hình phẳng (H) giới hạn bởi trục hoành, đồ thị của một parabol và một đường thẳng tiếp xúc parabol đó tại
điểm A(2;4), như hình vẽ bên. Tính diện tích phần tơ màu.
A.
Đáp án đúng: B
B.
Câu 28. Cho
C.
D.
khi đó
A.
.
B.
C.
.
Đáp án đúng: C
D.
Câu 29. Xét các số phức
.
.
thỏa mãn
khi biểu thức
và
. Tính
đạt giá trị nhỏ nhất.
A.
.
Đáp án đúng: D
B.
Giải thích chi tiết: Xét các số phức
khi biểu thức
.
C.
thỏa mãn
.
D.
và
.
. Tính
đạt giá trị nhỏ nhất.
10
A.
Lời giải
.
B.
Đặt
khi đó
. C.
.
D.
.
.
Ta có
Dấu
xảy ra khi và chỉ khi
hay
Câu 30. Cho hình chóp
Mặt phẳng
có đáy là hình bình hành tâm
, gọi
,
.
lần lượt là trung điểm
.
song song với mặt phẳng nào sau đây?
A.
.
Đáp án đúng: B
B.
Câu 31. Với các số thực dương
A.
.
,
C.
.
D.
.
bất kì. Mệnh đề nào sau đây đúng?
.
C.
Đáp án đúng: D
Câu 32.
, vậy
B.
.
.
D.
.
bằng
A.
B.
C.
Đáp án đúng: C
Câu 33.
Đồ thị của hàm số nào dưới đây có dạng như đườngcong trong hình bên ?
A.
.
C.
Đáp án đúng: A
B.
.
D.
.
D.
.
Giải thích chi tiết: Do đây là dạng của đồ thị hàm số
là:
với
nên hàm số cần tìm
.
Câu 34. Họ tất cả các nguyên hàm của hàm số
A.
C.
Đáp án đúng: B
Câu 35. Cho
là
.
B.
.
.
D.
.
là hai số thực dương và
là hai số thực tùy ý. Đẳng thức nào sau đây là sai?
11
A.
.
B.
C.
.
Đáp án đúng: D
Giải thích chi tiết: Cho
D.
là hai số thực dương và
A.
.
B.
Lời giải
Theo tính chất ta có đáp án.
.
Câu 36.
lớn nhất của biểu thức
C.
.
B.
C.
Ta có
. Tìm giá trị
D.
D.
. Đặt
.
thỏa mãn
và
.
.
.
,
.
Khi đó
.
Tương tự ta có
.
Do đó
.
Suy ra
Áp dụng
và
.
. Cho hai số phức
.
.
thỏa mãn
.
Tìm giá trị lớn nhất của biểu thức
.C.
D.
.
Giải thích chi tiết:
A. . B.
Lời giải
.
là hai số thực tùy ý. Đẳng thức nào sau đây là sai?
. Cho hai số phức
A.
.
Đáp án đúng: B
.
hay
.
ta có
.
Suy ra
.
Câu 37. Trong khơng gian với hệ tọa độ
kẻ từ
là
Đường thẳng
cho tam giác
có
phương trình đường phân giác trong
có một vectơ chỉ phương là
phương trình đường trung tuyến
của góc
là
12
A.
Đáp án đúng: A
Giải thích chi tiết:
Lời giải.
B.
Gọi
Vì
là trung điểm của
Mặt khác
Mà
Gọi
C.
nên
là trung điểm của
.
nên
.
nên ta có phương trình
là điểm đối xứng với
Gọi
.
qua
, suy ra
là trung điểm của
.
tại
.
Kết hợp với
nên ta có
chọn VTCP của đường thẳng
Câu 38. Phương trình
A. 2.
Đáp án đúng: C
từ điểm
là
có bao nhiêu nghiệm?
C. 1.
B. 3.
Câu 39. Cho hình chóp
khoảng cách
và
khi đó ta có
Do vậy điểm
có đáy
B.
Cho hình hộp
cắt đường thẳng
;
và
C.
.
D.
lần lượt là trung điểm ba cạnh
tại
. Tính
.
.
có
D. 0.
là hình vng cạnh
đến mặt phẳng
A.
.
Đáp án đúng: D
Câu 40.
phẳng
D.
Biết thể tích khối tứ diện
.
và
là
Mặt
Thể tích khối hộp đã cho
bằng
A.
Đáp án đúng: A
Giải thích chi tiết:
Lời giải.
B.
C.
D.
13
Gọi
ra
Theo tính chất của giao tuyến suy ra
lần lượt là trung điểm
nên
là trung điểm của
Suy
Ta có
Mặt khác
Từ đó suy ra
----HẾT---
14