Tải bản đầy đủ (.docx) (13 trang)

Đề ôn tập toán 12 có đáp án (121)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.11 MB, 13 trang )

ĐỀ MẪU CĨ ĐÁP ÁN

ƠN TẬP KIẾN THỨC
TỐN 12
Thời gian làm bài: 40 phút (Không kể thời gian giao đề)
-------------------------

Họ tên thí sinh: .................................................................
Số báo danh: ......................................................................
Mã Đề: 021.
Câu 1. Một học sinh A khi đủ 18 tuổi được cha mẹ cho
VNĐ. Số tiền này được bảo quản trong
ngân hàng MSB với kì hạn thanh tốn 1 năm và học sinh A chỉ nhận được số tiền này khi học xong 4 năm đại
học. Biết rằng khi đủ 22 tuổi, số tiền mà học sinh A được nhận sẽ là
VNĐ. Vậy lãi suất kì hạn một
năm của ngân hàng MSB là bao nhiêu?
A.
.
B.
.
C.
.
D.
Đáp án đúng: A
Giải thích chi tiết:
Gọi lãi suất kỳ hạn một năm của ngân hàng MSB là r. Áp dụng cơng thức lãi suất kép
kỳ) ta có :

trong đó (a là số tiền gửi, n là số chu kỳ gửi, r là lãi suất một chu kỳ, P là số tiền sau khi gửi n chu

.


Câu 2. Hàm số F ( x )=ln|sinx−3 cos x| là một nguyên hàm của hàm số nào trong các hàmsố sau đây?
−cosx−3 sinx
A. f ( x )=
.
B. f ( x )=sinx+3 cos x.
sinx−3 cos x
sinx−3 cosx
cosx +3 sinx
C. f ( x )=
.
D. f ( x )=
.
cos x +3 sinx
sinx−3 cos x
Đáp án đúng: D
cosx +3 sinx
dx .
Giải thích chi tiết: Tacó I = ∫ f ( x ) dx= ∫
sinx−3 cos x
Đặt t=sinx−3 cos x ⇒ dt =(cos x +3 sin x) dx .
Khi đó ta có
cosx +3 sinx
dt
I = ∫ f ( x ) dx= ∫
dx= ∫ =ln |t|+C=ln |cos x +3 sin x|+C .
sinx−3 cos x
t
Câu 3.
Cho khối chóp


có tam giác

vng tại

,

;

;

;

. Thể tích của khối chóp là:
A.

.

C.
.
Đáp án đúng: C

B.
D.

.
.

Câu 4. Gọi
lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón. Diện tích tồn phần
của hình nón bằng:

1


A.

B.

C.
D.
Đáp án đúng: B
Câu 5. Cho tứ diện S.ABC có 3 đường thẳng SA, SB, SC vng góc với nhau từng đôi một, SA = 3, SB = 4, SC
= 5. Diện tích mặt cầu ngoại tiếp S.ABC bằng:
A.
Đáp án đúng: A

B.

C.

D.

Câu 6. Diện tích hình phẳng giới hạn bởi parabol
thức nào sau đây?
A.

.

C.
Đáp án đúng: B


và đường thẳng

B.

.

D.

.

Giải thích chi tiết: Phương trình hồnh độ giao điểm của parabol

Diện tích hình phẳng giới hạn bởi parabol

được tính theo cơng

và đường thẳng

và đường thẳng





.
Câu 7. Cho hàm số

. Hàm số

có đồ thị nào dưới đây ?


A.

2


B.

C.

.

3


D.
Đáp án đúng: A

.

Giải thích chi tiết:

Các điểm cực trị có tọa độ là

nên suy ra đồ thị đáp án D phù hợp.
Câu 8. Ông A vay ngân hàng T (triệu đồng) với lãi suất % năm. Ông A thỏa thuận với ngân hàng cách thức
trả nợ như sau: sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau
đúng một tháng. Nhưng cuối tháng thứ ba kể từ lúc vay ơng A mới hồn nợ lần thứ nhất, cuối tháng thứ tư ơng
A hồn nợ lần thứ hai, cuối tháng thứ năm ơng A hồn nợ lần thứ ba (hoàn hết nợ). Biết rằng số tiền hoàn nợ lần
thứ hai gấp đơi số tiền hồn nợ lần thứ nhất và số tiền hoàn nợ lần thứ ba bằng tổng số tiền hồn nợ của hai lần

trước. Tính số tiền ông A đã hoàn nợ ngân hàng lần thứ nhất.

A.

C.
.
Đáp án đúng: D

.

B.

.

D.

.

Câu 9. Tìm giá trị thực của tham số
sao cho đồ thị của hàm số
đi qua
A.
B.
C.
D.
Đáp án đúng: B
Câu 10. Trong các mệnh đề dưới đây, mệnh đề nào sai?
8x
1
≥ 1.

A. ∀ x ∈ ℝ : x ( 1 −2 x ) ≤ .
B. ∃ x ∈ℚ :
8
( 2 x +1 )2
1
≥ 1.
C. ∀ x ∈ ℕ: x +
D. ∀ x ∈ ℤ , 6 x 2 −5 x+ 1≠ 0.
4x
Đáp án đúng: C
4


1
2
Giải thích chi tiết: * Ta có x (1 −2 x ) ≤ ⇔ ( 4 x −1 ) ≥ 0 đúng.
8

[

1
x= ∉ ℤ
2
2
* Ta có 6 x − 5 x +1=0⇔
nên suy ra 6 x 2 − 5 x +1 ≠ 0 đúng ∀ x ∈ ℤ.
1
x= ∉ ℤ
3
8x

1
2
1
≥ 1⇔ ( 2 x −1 ) ≤0 ⇔ x= ∈ℚ .
* Với x ≠ − ta có
2
2
2
( 2 x +1 )
1
≥ 1 sai với x=0 ∈ ℕ.
* Mệnh đề ∀ x ∈ ℕ: x +
4x
Câu 11. Có hai giá trị của tham số
Tổng hai giá trị này bằng?
A. 1.
B. 4.
Đáp án đúng: B
Giải thích chi tiết: + Khi
:

Ta có:
+ Khi

để đồ thị hàm số

có một tiệm cận ngang là
C. 2.

.


D. 3.

.
:

Ta có:
Câu 12. Tìm các số thực

A.
.
Đáp án đúng: D

.
thỏa mãn đẳng thức

B.

.

Giải thích chi tiết: Tìm các số thực

A.
.
B.
Hướng dẫn giải

. C.

:


C.

.

thỏa mãn đẳng thức

.

D.

D.

.

:

.
5


Vậy chọn đáp án A.
Câu 13. Cho mặt cầu:( S ) : x 2+ y 2 + z 2 +2 x −4 y +6 z +m=0. Tìm m để (S) cắt mặt phẳng ( P ) :2 x− y−2 z +1=0
theo giao tuyến là đường trịn có diện tích bằng 4 π .
A. m=10
B. m=9
C. m=3
D. m=−3
Đáp án đúng: B
Câu 14. Cho hình chóp

biết
,
,



, đáy

B.

.

C.

Giải thích chi tiết: Cho hình chóp
, biết
,
,
. B.

. C.

. D.

.



, đáy


B.

.

B.

C.

.

C.

.

cho bởi hàm
chiều là
.

B.

,

.

C.

(độ

) với
.


D.

.

,

D.

(minh

.



B.

Câu 18. Một nhà nghiên cứu ước tính rằng sau

A.

là hình chữ nhật. Tính thể tích



Câu 17. Số nghiệm dương của phương trình
A.
Đáp án đúng: D

.


.

Cho khối tứ diện OABC có OA, OB, OC đơi một vng góc và
họa như hình bên). Thể tích của khối tứ diện là:

A.
.
Đáp án đúng: D

D.

.

Câu 15. Nguyên hàm của hàm số
A.
.
Đáp án đúng: B
Câu 16.

,

.

A.
.
Đáp án đúng: C

A.


là hình chữ nhật. Tính thể tích

giờ kể từ

D.
đêm, nhiệt độ của thành phố Hồ Chí Minh được

. Nhiệt độ trung bình của thành phố từ
C.

.

D.

sáng đến

.
6


Đáp án đúng: A
Giải thích chi tiết:
Nhiệt độ trung bình từ

giờ đến

giờ tình theo cơng thức

Áp dụng vào bài tốn ta có nhiệt độ trung bình cần tính là:


Câu 19.
Cho hàm số

có đồ thị là đường cong hình bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

A.
.
Đáp án đúng: A

B.

Câu 20. Tính

bằng

.

A.

C.

.

D.

.

B.

C.

Đáp án đúng: C
Câu 21.
Hàm số nào dưới đây có bảng biến thiên như sau

D.

A. y=x 3−12 x .
2x
C. y=
.
x−1
Đáp án đúng: A
Câu 22. Số cạnh của một bát diện đều là ?’

B. y=−x3 +12 x .

A. .
Đáp án đúng: C

C.

B.

.

D. y=x 3−12 x +1.

.

D.


.
7


Giải thích chi tiết: Theo lý thuyết số cạnh của một bát diện đều là
Câu 23.
Tổng các nghiệm của phương trình
A. 4
B. 3
Đáp án đúng: A
Câu 24. Trong khơng gian
cầu

.

là:
C. 2

D. -2

, cho mặt cầu

. Tâm

và bán kính

của mặt

là:


A.

.

B.

.

C.
Đáp án đúng: B

.

D.

.

Câu 25. Cho số phức

thỏa mãn

A. .
Đáp án đúng: C

B.

Giải thích chi tiết: Cho số phức
A. . B.
Lời giải


.C.

Gọi

. D.

với

. Môđun của số phức
.

C.

thỏa mãn



.

D.

. Môđun của số phức

.



.
.


Ta có

.

Vậy
Câu 26.

.

Tổng các hệ số của tất cả các số hạng trong khai triển nhị thức
A.

.



B.

C.
.
Đáp án đúng: D
Giải thích chi tiết:
Lời giải

.

D.

.


Ta có
Tổng các hệ số của tất cả các số hạng trong khai triển trên chính là giá trị của đa thức tại
Vậy

.

Câu 27. Cho hình chóp
có đáy là hình vng ABCD cạnh
,
góc với mặt đáy. Gọi M, N lần lượt là trung điểm của AB, BC. Thể tích khối chóp
A.

.

.

B.

.

C.

.



vng



D.

.
8


Đáp án đúng: D
Câu 28.
Tìm tất cả các giá trị thực của tham số
tiểu .
A.
C.
Đáp án đúng: C
Câu 29.
Cho mặt cầu
là đường trịn
là hình trịn

để hàm số:

có cực đại và cực

.

B.
.

D.

tâm


bán kính

có tâm

Mặt phẳng

Gọi

.
.

cách

là giao điểm của tia

một khoảng bằng

với

tính thể tích

và cắt

theo giao tuyến

của khối nón đỉnh

đáy


(như hình).

A.
Đáp án đúng: A
Giải thích chi tiết:
Lời giải.
Từ giả thiết suy ra
Suy ra chiều cao hình nón

B.

C.

D.

Bán kính đường trịn đáy hình nón
Vậy thể tích khối nón cần tính
Câu 30. Cho

. Tính

A.
.
Đáp án đúng: D

B.

Giải thích chi tiết: Cho
A.
Lời giải


. B.

theo



.

C.

. Tính
. C.

. D.

?
.
theo



D.

.

?

.


Ta có:
9


Câu 31. Số các giá trị nguyên của tham số
cận là
A.
Đáp án đúng: A

để đồ thị hàm số

B.

C.

có đúng 4 đường tiệm
D.

Giải thích chi tiết: [ Mức độ 3] Số các giá trị nguyên của tham số

để đồ thị hàm số

có đúng 4 đường tiệm cận là
A.
B.
C.
Lời giải
FB tác giả: Thành Luân

D.


Ta có
đường thẳng
Do đó để đồ thị hàm số có đúng 4 đường tiệm cận
phương trình

có hai nghiệm phân biệt khác 2


Vậy có tất cả 19 giá trị nguyên của

thỏa mãn yêu cầu bài toán.

Câu 32. Cho hình lập phương
A.
.
Đáp án đúng: D

cạnh a. Tính góc giữa hai vectơ
B.

.

C.

Giải thích chi tiết: Cho hình lập phương
A.
.
Lời giải


B.

là hai đường TCN của đồ thị hàm số.
đồ thị hàm số có 2 TCN và 2 TCĐ

.C.

.

.

và
D.

cạnh a. Tính góc giữa hai vectơ

D.

.
.
và

.

.

Ta có:
*
là hình vuông nên
* Tam giác DAC vuông cân tại


.
D.

10


Khi đó:
Kết luận:
.
Câu 33.
Hình đa diện trong hình vẽ bên có bao nhiêu cạnh?

A.
Đáp án đúng: D

B.

C.

D.

Câu 34. Trong khơng gian, cho tam giác
vuông tại ,

. Khi quay tam giác
quanh cạnh góc vng
thì đường gấp khúc
tạo thành một hình nón. Diện tích xung quanh hình nón
đó bằng

A.
.
B.
.
C.
.
D.
.
Đáp án đúng: D
Câu 35. Trong các mệnh đề sau mệnh đề nào đúng?
3
A. là số nguyên.
B. 2023 chia hết cho 3.
2
C. 2 là số nguyên tố.
D. 2 là số chính phương.
Đáp án đúng: C
Giải thích chi tiết: Số 2 là số tự nhiện lớn hơn 1 chỉ có một ước lớn hơn 1 là chính nó nên 2 là số ngun tố.
Câu 36. Gọi
Giá trị S

là tổng tất cả các nghiệm thuộc

A.
.
Đáp án đúng: C

B.

Câu 37. Cho số phức


.

C.
thỏa mãn

A.
C.
Đáp án đúng: D

B.

.

D.

.

B.

C.
Hướng dẫn giải

thỏa mãn

.

.
. Cặp số


.

Giải thích chi tiết: Cho số phức
A.

của phương trình

D.

.



.
.
. Cặp số



.
. D.

.

Ta có
11


Đặt
suy ra

Vậy chọn đáp án B.
Câu 38.
Một hình nón có góc ở đỉnh bằng
A.

, đường sinh bằng

.

C.
Đáp án đúng: C
Câu 39.

.

Cho hàm số

( ,

,

, diện tích xung quanh của hình nón là

B.

.

D.

.


) có bảng biến thiên như sau:

Khẳng định nào dưới đây là đúng?

A.

.

B.

.

C.

.

D.
.
Đáp án đúng: D
Câu 40. Cho

là hai nghiệm phức của phương trình

A. .
Đáp án đúng: A

B.

Giải thích chi tiết: Cho

bằng

là hai nghiệm phức của phương trình

A. . B.
Lời giải

. C.

.

. Giá trị của
C. .

bằng
D.

.

. Giá trị của

. D. .
12


Cách 1:
Ta có


.

là hai nghiệm phức của phương trình

.

Suy ra
Cách 2:

.

.
.
.
----HẾT---

13



×