Tài liệu Free pdf LATEX
BÀI TẬP ƠN TẬP MƠN TỐN THPT
(Đề thi có 4 trang)
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (S AB) và (S AD) cùng
vng góc
là
√ tích khối chóp S .ABCD
√ với đáy, S C = a 3. Thể
a3 3
a3
a3 3
.
B.
.
C.
.
D. a3 .
A.
3
9
3
Câu 2. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 17 tháng.
B. 15 tháng.
C. 16 tháng.
D. 18 tháng.
2x + 1
x→+∞ x + 1
1
A. 1.
B. .
C. 2.
D. −1.
2
Câu 4. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc của
0
A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và BC
a 3
. Khi đó thể tích khối lăng trụ là
là
4 √
√
√
√
a3 3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
36
24
6
12
Câu 5. !Dãy số nào sau đây có giới
!n hạn là 0?
!n
!n
n
1
4
5
5
A.
.
B.
.
C. − .
D.
.
3
e
3
3
Câu 3. Tính giới hạn lim
Câu 6.
mệnh đề sau, mệnh đềZ nào sai?
Z Cho hàm số f (x), g(x)
Z liên tục trên
Z R. Trong các Z
A.
Z
C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
Z
D.
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Câu 7. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó là:
A. 72cm3 .
B. 27cm3 .
C. 64cm3 .
D. 46cm3 .
Câu 8. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A. a3 .
B.
.
C.
.
D.
.
6
24
12
Câu 9. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = 21.
C. P = −10.
D. P = −21.
Câu 10. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 4.
C. −2.
!4x
!2−x
2
3
Câu 11. Tập các số x thỏa mãn
≤
là
#
" 3 ! 2
#
2
2
2
A. −∞; .
B.
; +∞ .
C. −∞; .
5
5
3
D. 2.
"
!
2
D. − ; +∞ .
3
Trang 1/4 Mã đề 1
2
Câu 12. Tính
√4
√ mơ đun của số phức z biết (1 + 2i)z = 3 + 4i. √
B. |z| = 5.
C. |z| = 5.
D. |z| = 5.
A. |z| = 2 5.
1
Câu 13. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (−∞; 3).
C. (1; +∞).
D. (1; 3).
Câu 14. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
log2 240 log2 15
−
+ log2 1 bằng
Câu 15. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. −8.
B. 4.
C. 1.
D. 3.
Câu 16. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 1.
C. 2.
D. 5.
Câu 17. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = −8.
C. x = −5.
D. x = 0.
1 3
Câu 18. [2D1-3] Cho hàm số y = − x + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. −2 < m < −1.
C. (−∞; −2] ∪ [−1; +∞). D. −2 ≤ m ≤ −1.
Câu 19. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m ≥ 0.
C. m ≤ 0.
D. − < m < 0.
A. m > − .
4
4
2
Câu 20. Giá trị của lim(2x − 3x + 1) là
x→1
A. 1.
B. 2.
C. +∞.
D. 0.
√
Câu 21. [12215d] Tìm m để phương trình 4 x+
9
3
A. 0 ≤ m ≤ .
B. 0 ≤ m ≤ .
4
4
1−x2
√
− 4.2 x+
1−x2
− 3m + 4 = 0 có nghiệm
3
C. m ≥ 0.
D. 0 < m ≤ .
4
√
2
Câu 22. [4-1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. 62.
D. Vô số.
√
Câu 23. Thể tích của khối lập phương
√ có cạnh bằng a 2
3
√
√
2a 2
A. V = a3 2.
B.
.
C. V = 2a3 .
D. 2a3 2.
3
Câu 24. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 10.
C. 12.
D. 6.
1 − 2n
Câu 25. [1] Tính lim
bằng?
3n + 1
2
2
1
A. .
B. − .
C. .
D. 1.
3
3
3
Câu 26. [2] Cho chóp đều S .ABCD có đáy là hình vuông tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. 2a 6.
B.
.
C. a 6.
D. a 3.
2
2
x − 3x + 3
Câu 27. Hàm số y =
đạt cực đại tại
x−2
A. x = 2.
B. x = 0.
C. x = 3.
D. x = 1.
Trang 2/4 Mã đề 1
Câu 28. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
n2 − 3n
n2 − 2
.
B.
u
=
.
C.
u
=
.
A. un =
n
n
5n − 3n2
(n + 1)2
n2
Z 2
ln(x + 1)
Câu 29. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 1.
B. −3.
C. 0.
D. un =
1 − 2n
.
5n + n2
D. 3.
Câu 30. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là −3, phần ảo là −4.
Câu 31. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.
B. 3.
C. 2.
Câu 32. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 5}.
D. 1.
D. {4; 3}.
Câu 33. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.
√
√
√
√
5 13
.
D. 26.
B. 2 13.
C.
A. 2.
13
x+1
bằng
Câu 34. Tính lim
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. 1.
D. .
6
2
3
Câu 35. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 216 triệu.
C. 212 triệu.
D. 210 triệu.
Câu 36. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
! x3 −3mx2 +m
1
Câu 37. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m = 0.
C. m ∈ (0; +∞).
D. m , 0.
Trang 3/4 Mã đề 1
Câu 38. Cho hàm số y = x3 − 2x2 + x + 1.
! Mệnh đề nào dưới đây đúng?
!
1
1
B. Hàm số nghịch biến trên khoảng ; 1 .
A. Hàm số đồng biến trên khoảng ; 1 .
3
3
!
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng −∞; .
3
Câu 39. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 3.
B. 2e + 1.
C. .
D. 2e.
e
Câu 40. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ phẳng vng góc với (ABCD). Thể tích khối chóp
√ S .ABCD là
3
3
3
√
a 3
a 3
a 2
.
B.
.
C. a3 3.
D.
.
A.
2
2
4
Câu 41. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Có một.
C. Khơng có.
D. Có hai.
Câu 42. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. −e2 .
C. 2e4 .
D. −2e2 .
!x
1
Câu 43. [2] Tổng các nghiệm của phương trình 31−x = 2 +
là
9
A. − log2 3.
B. 1 − log2 3.
C. log2 3.
D. − log3 2.
√
√
Câu 44. Phần thực và √
phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt √l
√
A. Phần thực là 1√− 2, phần ảo là −√ 3.
B. Phần thực là √2 − 1, phần ảo là −√ 3.
D. Phần thực là 2, phần ảo là 1 − 3.
C. Phần thực là 2 − 1, phần ảo là 3.
Câu 45. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 3.
C. 1.
D. Vơ nghiệm.
Câu 46. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
√
a3 15
a3 5
a3 6
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 47. Hàm số nào sau đây khơng có cực trị
1
x−2
.
C. y = x + .
D. y = x4 − 2x + 1.
A. y = x3 − 3x.
B. y =
2x + 1
x
Câu 48. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 4.
C. 6.
D. 8.
Câu 49. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 0.
C. 1.
D. 2.
Câu 50. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. 2020.
C. log2 2020.
D. log2 13.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 4/4 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
C
2.
3.
C
4.
5. A
7.
C
D
C
6.
8.
B
9.
D
10.
11.
D
12.
D
C
D
13. A
14.
C
15. A
16.
C
17.
B
19. A
21.
B
D
20.
D
22.
D
23.
25.
18.
C
24. A
B
C
26.
27.
D
28.
D
29.
B
30.
C
31.
B
32.
C
33.
C
34. A
35.
C
36. A
38.
B
39. A
40.
B
41. A
42.
B
43. A
44.
B
37.
B
45.
C
46.
C
C
47.
B
48.
49.
B
50.
1
D