Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn thi thpt toán 12 (399)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (104.79 KB, 5 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Giá trị của lim (3x2 − 2x + 1)
x→1

A. +∞.

B. 3.

C. 2.

D. 1.

!
1
2
2016
4x
Câu 2. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017


2017
2017
2016
A. T =
.
B. T = 2016.
C. T = 2017.
D. T = 1008.
2017
!
1
1
1
Câu 3. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. .
B. .
C. 2.
D. +∞.
2
2
n−1
Câu 4. Tính lim 2
n +2
A. 2.
B. 0.

C. 3.
D. 1.
!

!

Câu 5.√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1.
3
3
1
A.
.
B. .
C. .
D. 1.
2
2
2
Câu 6. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 4 mặt.
C. 6 mặt.

D. 3 mặt.

Câu 7. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 27 lần.
C. Tăng gấp 18 lần.

D. Tăng gấp 3 lần.
Câu 8. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(4; 8).
C. A(−4; −8)(.
D. A(−4; 8).
Câu 9. Tính lim
x→2

A. 1.

x+2
bằng?
x
B. 2.

C. 0.

D. 3.

Câu 10. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 11. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 =
.
B. y0 = 2 x . ln 2.

ln 2

C. y0 =

1

.
D. y0 = 2 x . ln x.
x

Câu 12. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 2
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6

6
36
18
2 x . ln

Câu 13. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
9
15
18
6
Trang 1/4 Mã đề 1


Câu 14. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. e2016 .
C. 0.
D. 1.
Câu 15. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không

rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 11 năm.
C. 12 năm.
D. 14 năm.
Câu 16. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
B. .
C.
.
D. a.
A. .
2
3
2
Câu 17. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 8.
C. 5.
D. 6.
Câu 18. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng





a 3
2a 3
a 3
A. a 3.
B.
.
C.
.
D.
.
2
2
3
Câu 19. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (4; +∞).
C. (4; 6, 5].
D. (−∞; 6, 5).
Câu 20. Dãy số nào sau đây có giới hạn khác 0?
n+1
1
B.
.
A. .
n
n

C.


sin n
.
n

Câu 21. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 8 mặt.
C. 4 mặt.

Câu 22. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 108.
C. 6.

1
D. √ .
n
D. 10 mặt.
D. 4.

Câu 23. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 1.


C. 3.

D. 4.

π
Câu 24. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


A. T = 2.
B. T = 2 3.
C. T = 3 3 + 1.
D. T = 4.
Câu 25. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A. 3.
B.
.

C. 1.
D. 2.
3
Trang 2/4 Mã đề 1


Câu 26. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
C. .
D. 6.
A. 9.
B. .
2
2
Câu 27. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. F(x) = G(x) trên khoảng (a; b).
Câu 28. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3 5
a3 15
a3
A.

.
B.
.
C.
.
D.
.
25
25
5
3
Câu 29. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 12.
C. 8.
D. 20.
Câu 30. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n3 lần.
C. n2 lần.
D. 3n3 lần.


4n2 + 1 − n + 2
bằng
Câu 31. Tính lim
2n − 3
3
A. 1.
B. 2.

C. .
D. +∞.
2
Câu 32. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
.
B. f 0 (0) = 10.
C. f 0 (0) = 1.
A. f 0 (0) =
ln 10

D. f 0 (0) = ln 10.

Câu 33. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Hai hình chóp tứ giác.
9x
Câu 34. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. .
B. 1.
C. −1.
D. 2.
2
Câu 35. Khối đa diện đều loại {5; 3} có số cạnh

A. 20.
B. 30.
C. 8.
D. 12.
Câu 36. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 8.

C. 10.

D. 6.

Câu 37. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng

2
.
e
Câu 38. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 6%.
C. 0, 7%.
D. 0, 8%.
A. 2e.

B. 2e + 1.

C. 3.


D.

Trang 3/4 Mã đề 1


Câu 39. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = −2.
C. m = 0.

D. m = −3.

Câu 40. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

2.


3.

C

4.

B

6.

B

D

5.

D

7.

B

8.

B

9.

B


10.

B

11.

B

12.
C

14.

15.

16.

D

17.

18.

D

19.

20.


B
D

23.

24.

D

25.

B

27.

28. A
30.

B

40.

C
C
D
B

31. A
D


33. A

B

35.

36. A
38.

D

29. A

32.
34.

B

21. A

22.
26.

D

B
C

37.
C


39.
D

1

B



×