Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn thi thpt toán 12 (413)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (113.39 KB, 5 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 3 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ√C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
D. 1.
A.
.
B. 2.
C. 3.
3
n−1
Câu 2. Tính lim 2
n +2
A. 2.
B. 3.


C. 1.
D. 0.
Câu 3. Phát biểu nào sau đây là sai?
A. lim un = c (un = c là hằng số).
B. lim qn = 0 (|q| > 1).
1
1
C. lim k = 0.
D. lim = 0.
n
n
Câu 4. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hồn nợ ở mỗi tháng là như nhau và ơng A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 2, 20 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 22 triệu đồng.
Câu 5. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
d = 60◦ . Đường chéo
Câu 6. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0


BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





4a3 6
a3 6
2a3 6
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 7. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối bát diện đều.


4n2 + 1 − n + 2
Câu 8. Tính lim
bằng

2n − 3
3
A. +∞.
B. .
C. 1.
D. 2.
2
Câu 9. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 3
a 2
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
48
16
24
48

Câu 10. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m

A. 8 2.
B. 7 3.
C. 8 3.
D. 16.
Câu 11.
đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Trang 1/3 Mã đề 1


Z
C.

( f (x) − g(x))dx =

Z

Z


Z

f (x)dx −

D.

g(x)dx.

2n + 1
Câu 12. Tính giới hạn lim
3n + 2
3
1
A. .
B. .
2
2

f (x)g(x)dx =

C. 0.

Z

Z
f (x)dx

D.

g(x)dx.


2
.
3

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y


2 11 − 3
9 11 + 19
C. Pmin =
.
D. Pmin =
.
3
9

Câu 13. [12210d] Xét các số thực dương x, y thỏa mãn log3
Pmin của P = x +
√ y.

18 11 − 29
9 11 − 19
A. Pmin =
. B. Pmin =
.
21
9


2

2

sin x
Câu 14.
+ 2cos x √
lần lượt là
√ [3-c] Giá trị nhỏ nhất và giá√trị lớn nhất của hàm số f (x) = 2
B. 2 và 2 2.
C. 2 và 3.
D. 2 và 3.
A. 2 2 và 3.

Câu 15. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = 0.
C. m = −1.

D. m = −2.

2

Câu 16. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 24.
B. S = 22.

ln x

m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 135.
D. S = 32.
1
Câu 17. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 < m ≤ 3.
C. 0 < m ≤ 1.
D. 2 ≤ m ≤ 3.
Câu 18. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
2a
a 2
a
B. .

C.
.
D.
.
A. .
4
3
3
3
Câu 20. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.

Câu 19. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 21. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 22. Tính lim
A. +∞.

x→3

x2 − 9
x−3


B. 6.

Câu 23. Dãy số
!n nào có giới hạn bằng 0?
!n
6
−2
A. un =
.
B. un =
.
3
5

C. 3.

D. −3.

n3 − 3n
C. un =
.
n+1

D. un = n2 − 4n.

Câu 24. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì


f 0 (x)dx =

g0 (x)dx.
Trang 2/3 Mã đề 1


Z
B. Nếu
Z
C. Nếu
Z
D. Nếu

f (x)dx =

Z

g0 (x)dx thì f (x) = g(x), ∀x ∈ R.

f (x)dx =

Z

g(x)dx thì f (x) = g(x), ∀x ∈ R.

f (x)dx =

Z

0


g(x)dx thì f (x) , g(x), ∀x ∈ R.

1
Câu 25. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. −2 ≤ m ≤ −1.
C. (−∞; −2) ∪ (−1; +∞). D. (−∞; −2] ∪ [−1; +∞).
Câu 26. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. .
B. 7.
C. 5.
D.
.
2
2
Câu 27. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Khơng có.
C. Có một hoặc hai.
D. Có hai.
x+1
Câu 28. Tính lim
bằng
x→−∞ 6x − 2

1
1
1
A. .
B. .
C. .
D. 1.
3
2
6
ln x p 2
1
Câu 29. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
8
1
1
A. .
B. .
C. .
D. .
9
3
9
3
Câu 30. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng


a
a 3
a
C. .
D.
.
A. a.
B. .
2
3
2
Câu 31. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 4 mặt.
D. 9 mặt.
!4x
!2−x
2
3
Câu 32. Tập các số x thỏa mãn


3 # 2
#
"
!
"
!

2
2
2
2
; +∞ .
A. −∞; .
B. −∞; .
C. − ; +∞ .
D.
3
5
3
5
Câu 33. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
C. 2.
D. 2.
A. 1.
B. 10.
Câu 34. [2] Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
A. m = ±1.
B. m = ± 3.
C. m = ±3.
D. m = ± 2.


Câu 35.
√ Tìm giá trị lớn nhất của hàm
√ số y = x + 3 + 6√− x
A. 3 2.

B. 2 + 3.
C. 2 3.
D. 3.
Câu 36. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. n3 lần.
C. 2n2 lần.
D. n3 lần.
Câu 37. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
A. 2
.
B.
.
C.
.
D.
.



a + b2
a2 + b2
2 a2 + b2
a2 + b2

Trang 3/3 Mã đề 1


Câu 38. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là



a3 3
2a3 3
5a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
2
3
3
3
Câu 39. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.

A. 216 triệu.
B. 212 triệu.
C. 220 triệu.
D. 210 triệu.
Câu 40. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.

B. (II) và (III).

C. (I) và (II).

D. (I) và (III).

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/3 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B


2.

D

3.

B

4.

D

5. A

6.

D

7. A

8.

9. A

10.

D

12.


D

D

11.
C

13.
17.

14. A
16.

D

15.
C

20. A

21.

C

22.

23. A

C
B

C

24.
B

27.

26. A
28.

C

29. A
31.

D

18.

B

19.

25.

C

C

30. A

B

32.

33. A

34.

35. A

36.

37.

B

38. A

39.

B

40.

1

C
D
B
C




×