Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn thi thpt toán 12 (408)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (108.66 KB, 5 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Năm tứ diện đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
a
1
Câu 2. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 4.
B. 1.
C. 7.
D. 2.
Câu 3.
Z Trong các khẳng định sau, khẳng định nào sai? Z
xα+1
α
A.
0dx = C, C là hằng số.
B.


x dx =
+ C, C là hằng số.
α+1
Z
Z
1
C.
dx = x + C, C là hằng số.
D.
dx = ln |x| + C, C là hằng số.
x
2n − 3
Câu 4. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. 1.
C. −∞.
D. +∞.
Câu 5. Bát diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.

C. {4; 3}.

D. {5; 3}.

Câu 6. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).

B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim− f (x) = f (a) và lim+ f (x) = f (b).

1
Câu 7. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. −2.

x→a

x→b

x→a

x→b

D. lim− f (x) = f (a) và lim− f (x) = f (b).

C. 2.

D. 1.


Câu 8. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. −4.
C. 2.

D. 4.

Câu 9. Giá√trị cực đại của hàm số y √
= x3 − 3x2 − 3x + 2


B. 3 + 4 2.
C. −3 − 4 2.
D. −3 + 4 2.
A. 3 − 4 2.
!
3n + 2
2
Câu 10. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 3.
B. 2.
C. 5.
D. 4.
Câu 11. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.

C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Câu 12. Tính lim
A. +∞.

x→3

x2 − 9
x−3

B. 6.

C. −3.

D. 3.
Trang 1/4 Mã đề 1


Câu 13. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.

C. 9.
D. 8.
A. 27.
B. 3 3.
Câu 14. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. V = 4π.
C. 8π.

D. 32π.
Câu 15. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 7, 2.
C. 0, 8.

D. 72.

Câu 16. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 1.
B. T = 4 + .
C. T = e + 3.
D. T = e + .
e
e
Câu 17. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 18. Trong các khẳng định sau, khẳng định nào sai?
A. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
dx = log |u(x)| + C.
B.
u(x)

C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 19.
f (x), g(x) liên
đề nào sai? Z
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
C.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
D.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
!
x+1
Câu 20. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x

4035
2017
2016
.
C.
.
D.
.
A. 2017.
B.
2018
2018
2017
Câu 21. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 3}.
!4x
!2−x
2
3
Câu 22. Tập các số x thỏa mãn


3 # 2
"
!
#
2
2

2
A.
; +∞ .
B. −∞; .
C. −∞; .
5
5
3

D. {3; 4}.

"

!
2
D. − ; +∞ .
3

Câu 23. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n3 lần.
C. 3n3 lần.
D. n2 lần.
1 + 2 + ··· + n
Câu 24. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 1.
1

D. lim un = 0.
C. lim un = .
2
Câu 25. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 20.

C. 8.

D. 30.
Trang 2/4 Mã đề 1


Câu 26. Cho z là nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z

−1 − i 3
−1 + i 3
A. P = 2.
B. P = 2i.
C. P =
.
D. P =
.
2
2
Câu 27.
!
Z
Z Các khẳng định nào sau
Z đây là sai?

0

f (x)dx = f (x).
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. B.
Z
Z
Z
Z
C.
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
A.

Câu 28. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 1.
C. m > −1.

D. m > 0.

Câu 29. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim [ f (x) + g(x)] = a + b.
B. lim

= .
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) − g(x)] = a − b.
D. lim [ f (x)g(x)] = ab.
x→+∞

x→+∞

Câu 30. Cho hàm số y = x − 3x + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. −3.
C. 3.
D. −6.
3

2

Câu 31. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một.
C. Khơng có.
D. Có một hoặc hai.
Câu 32. Phát biểu nào sau đây là sai?
1
A. lim = 0.
B. lim qn = 0 (|q| > 1).
n

1
C. lim k = 0.
D. lim un = c (un = c là hằng số).
n
0 0 0 0
0
Câu 33.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 3
a 6
a 6
.
B.
.
C.
.
D.
.
A.
3
7
2
2
Câu 34. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).

Các mệnh đề đúng là
A. (I) và (III).

B. Cả ba mệnh đề.

C. (I) và (II).

D. (II) và (III).

Câu 35. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 3.
C. V = 6.
D. V = 5.
2
x
Câu 36. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 0.
B. M = , m = 0.
C. M = e, m = 1.
D. M = e, m = .
e
e
!
1
1

1
Câu 37. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. .
B. 2.
C. +∞.
D. .
2
2
Trang 3/4 Mã đề 1


Câu 38. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
2n + 1
Câu 39. Tính giới hạn lim
3n + 2
2
1
3
A. .
B. 0.
C. .

D. .
2
3
2
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
a 2
a
a
2a
A.
.
B. .
C. .
D.
.
3
3
4
3
Câu 40. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 4/4 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

3.

B

4. A

5.

B

6.

7.

B

8. A
D

9.
B

12.


13.

B

15. A

18.

C

17.

C
D

22.
24.

C

28.

B

23.

B

25.


B

C

29.

B

31.

32.

B

33. A
C

D
B
D

35. A

36. A
40.

B

21.


30.

38.

B

27.

26. A

34.

D

19. A

B

20.

B

10.

11.
16.

C


37.
C

39.
D

1

B
C



×