Tải bản đầy đủ (.pdf) (4 trang)

Đề ôn thi thpt toán 12 (402)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (108.17 KB, 4 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 4 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

1
Câu 1. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m−2 có nghiệm duy nhất?
3
A. 2.
B. 3.
C. 1.
D. 4.
Câu 2. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.

Câu 3. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 36.
C. 6.
D. 4.
Câu 4. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. 3.



D. Vô nghiệm.

1 + 2 + ··· + n
Câu 5. [3-1133d] Tính lim
n3
2
1
A. .
B. 0.
C. .
D. +∞.
3
3
Câu 6. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 22.
C. 21.
D. 24.
2

2

2

Câu 7. Tính thể tích khối lập phương biết tổng diện tích tất
√ cả các mặt bằng 18.
D. 27.

A. 8.
B. 9.
C. 3 3.
2

Câu 8. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
A. 3 .
B.
.
C.
√ .
e
2e3
2 e
Câu 9. Biểu thức nào sau đây không có nghĩa
A. (−1)−1 .
B. 0−1 .


C. (− 2)0 .

D.

D.

1
.

e2

−1.

−3

Câu 10. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A. 1.
B. 2.
C.
.
D. .
2
2
0 0 0 0
Câu 11. [3-1212h] Cho hình lập phương ABCD.A B C D , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
6
15

9
18

2
Câu 12. [1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 64.
C. 63.
D. Vô số.
0 0 0
d = 60◦ . Đường chéo
Câu 13. Cho lăng trụ đứng ABC.A B C có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





a3 6
2a3 6
4a3 6
3
A.
.
B.
.
C. a 6.
D.
.

3
3
3
Câu 14. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (4; +∞).
C. (−∞; 6, 5).
D. (4; 6, 5].
Trang 1/4 Mã đề 1


Câu 15. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
.
D. 40a3 .
A. 10a3 .
B. 20a3 .
C.
3
2n2 − 1
Câu 16. Tính lim 6
3n + n4
2
A. 1.
B. 0.
C. .
D. 2.

3
Câu 17. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều sai.

C. Cả hai đều đúng.

D. Chỉ có (II) đúng.

Câu 18. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. 2e4 .
C. 2e2 .
D. −2e2 .
Câu 19. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.

D. |z| = 10.
A. |z| = 17.
B. |z| = 10.
C. |z| = 17.
Câu 20. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) xác định trên K.

B. f (x) có giá trị nhỏ nhất trên K.
D. f (x) liên tục trên K.


Câu 21. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
C là


a3 3
a3
a3 3
.
B.
.
C. a3 .
D.
.
A.
6
2
3

Câu 22. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. −3.
B. − .
C. .
D. 3.
3
3
Câu 23. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương

ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 8 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp 4 lần.
!
!
!
x
1
2
2016
4
. Tính tổng T = f
+f
+ ··· + f
Câu 24. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
A. T = 2017.
B. T = 1008.
C. T =
.
D. T = 2016.
2017
Câu 25. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên

(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là
3
3
3
3
8a 3
8a 3
4a 3
a 3
A.
.
B.
.
C.
.
D.
.
9
3
9
9
π
Câu 26. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.


A. T = 2 3.
B. T = 2.
C. T = 4.
D. T = 3 3 + 1.
Z 1
Câu 27. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
1
A. .
2

0

B. 0.

C.

1
.
4

D. 1.
Trang 2/4 Mã đề 1


Câu 28. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1

1
.
B. √
.
C. 2
.
A. √
.
D. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
x+2
Câu 29. Tính lim
bằng?
x→2
x
A. 0.
B. 2.
C. 1.
D. 3.


4n2 + 1 − n + 2
Câu 30. Tính lim
bằng
2n − 3
3

A. .
B. 1.
C. 2.
D. +∞.
2
Câu 31. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng 2n+1.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 32. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
B.
f (x)dx = f (x).

f (x)dx = F(x) + C.

C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 33. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 12.
C. ln 10.
D. ln 4.
Câu 34. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp


√ S .ABCD là
3
3
3

a 2
a 3
a 3
.
B. a3 3.
C.
.
D.
.
A.
2
2
4
Câu 35. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = 0.
C. m = −3.
D. m = −2.
Câu 36. Hàm số nào sau đây khơng có cực trị
x−2
A. y =
.
B. y = x3 − 3x.
2x + 1

Câu 37. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 4}.

C. y = x4 − 2x + 1.

1
D. y = x + .
x

C. {4; 3}.

D. {3; 3}.

Câu 38. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

a3 3
a3 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.

.
24
8
24
48
Câu 39. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. R.
C. (0; 2).
D. (−∞; 1).
Câu 40. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. V = 4π.
C. 16π.
D. 8π.
- - - - - - - - - - HẾT- - - - - - - - - Trang 3/4 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2.

C
D

3.


4.

B
B

5.

C

6.

7.

C

8.

9.

10.

B

12. A
D

15.

B


18. A
20.

D

22.
24.

C
B

26.

C
B
D

19.

D

21.

B

23.

B


25. A
C

27. A

B

29.

30.

B

31. A
C

B

33. A

34. A

35.

36. A

37.

38.


B

17.

28.
32.

D

13.

14.
16.

C

C

39.

1

D
B
C



×