Tải bản đầy đủ (.pdf) (6 trang)

Đề ôn thpt toán 12 (398)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (113.51 KB, 6 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Tính lim
x→2

A. 3.

x+2
bằng?
x
B. 2.

C. 0.

D. 1.

Câu 2. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. 1 + 2 sin 2x.
C. 1 − sin 2x.

D. −1 + sin x cos x.

Câu 3. Giá trị giới hạn lim (x2 − x + 7) bằng?


x→−1

A. 7.

B. 0.

C. 9.

D. 5.

C. 1.

D. 3.

C. 1.

D. 2.

Câu 6. Dãy số nào có giới hạn bằng 0?
n3 − 3n
A. un = n2 − 4n.
B. un =
.
n+1

!n
6
C. un =
.
5


!n
−2
D. un =
.
3

Câu 7. !Dãy số nào sau đây có giới !hạn là 0?
n
n
4
5
A.
.
B. − .
e
3

!n
1
C.
.
3

!n
5
D.
.
3


B. +∞.

C. 2.

D. 1.

B. +∞.

C. −∞.

D. 0.

x+1
bằng
x→+∞ 4x + 3
1
1
A. .
B. .
4
3
2n + 1
Câu 5. Tìm giới hạn lim
n+1
A. 0.
B. 3.
Câu 4. Tính lim

Câu 8. Giá trị của lim(2x2 − 3x + 1) là
x→1


A. 0.
Câu 9. Tính lim
x→1

A. 3.

x3 − 1
x−1

Câu 10. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim− f (x) = f (a) và lim− f (x) = f (b).

x→a

x→b

x→a


x→b

D. lim+ f (x) = f (a) và lim+ f (x) = f (b).

Câu 11. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m > 3.
C. m ≥ 3.
D. m ≤ 3.
Câu 12. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m > .
C. m ≥ .
D. m < .
4
4
4
4
Câu 13. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 3.
C. Vô nghiệm.
D. 1.
Câu 14. [12214d] Với giá trị nào của m thì phương trình
A. 2 ≤ m ≤ 3.


B. 2 < m ≤ 3.

1
3|x−2|

= m − 2 có nghiệm

C. 0 < m ≤ 1.

D. 0 ≤ m ≤ 1.
Trang 1/5 Mã đề 1


Câu 15. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới đây?
"
!
5
5
A.
;3 .
B. [3; 4).
C. (1; 2).
D. 2; .
2
2



ab.

log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0.
D. m ≤ 0.

Câu 16. [1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m > 4.

B. m < 0 ∨ m = 4.


Câu 17. [12215d] Tìm m để phương trình 4 x+
3
A. m ≥ 0.
B. 0 ≤ m ≤ .
4

1−x2



− 3m + 4 = 0 có nghiệm
3
9
C. 0 < m ≤ .
D. 0 ≤ m ≤ .
4

4

− 4.2 x+

1−x2

Câu 18. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 2.
B. 1.
C. 3.
D. Vơ số.
Câu 19. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 13.
C. log2 2020.
D. 2020.
log 2x
Câu 20. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1 − 4 ln 2x
1
A. y0 =
.
C. y0 =
.
.
B. y0 = 3

3
x
2x ln 10
2x3 ln 10

D. y0 =

1 − 2 ln 2x
.
x3 ln 10

Câu 21. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 1.

12 + 22 + · · · + n2
Câu 22. [3-1133d] Tính lim
n3
2
B. +∞.
A. .
3
7n2 − 2n3 + 1
Câu 23. Tính lim 3
3n + 2n2 + 1
2

A. - .
B. 0.
3
Câu 24. Tính lim
A. 0.

C. 3.

C. 0.

C.

7
.
3

D. 2.

D.

D. 1.

2n2 − 1
3n6 + n4
B. 2.

C. 1.

1
.

3

D.

2
.
3

Câu 25. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un
B. Nếu lim un
C. Nếu lim un
D. Nếu lim un

!
un
= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
v
n
!
un
= a , 0 và lim vn = ±∞ thì lim
= 0.
vn
= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= +∞.
= a > 0 và lim vn = 0 thì lim

vn
Trang 2/5 Mã đề 1


!
3n + 2
2
Câu 26. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 2.
C. 3.
D. 4.
Câu 27. Phát biểu nào sau đây là sai?
1
B. lim √ = 0.
n
1
C. lim qn = 1 với |q| > 1.
D. lim k = 0 với k > 1.
n
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 28. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
A. lim un = 0.
B. lim un = 1.
1

C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = .
2
n−1
Câu 29. Tính lim 2
n +2
A. 2.
B. 0.
C. 1.
D. 3.
A. lim un = c (Với un = c là hằng số).

Câu 30. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 + n + 1
1 − 2n
n2 − 3n
A. un =
.
B.
u
=
.
C.
u
=
.
D.
u
=

.
n
n
n
5n − 3n2
(n + 1)2
5n + n2
n2
Câu 31. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1
.
B. √
.
C. √
.
D. 2
.
A. √
a + b2
2 a2 + b2
a2 + b2
a2 + b2
Câu 32. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng




a 6
.
B. a 3.
C. 2a 6.
D. a 6.
A.
2
Câu 33. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



2a 3
a 3
a 3
.
B.
.
C.
.
D. a 3.
A.
3
2
2
d = 30◦ , biết S BC là tam giác đều
Câu 34. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √

và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
16
13
9
26
[ = 60◦ , S O
Câu 35. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S BC) bằng


2a 57
a 57
a 57
A.

.
B.
.
C. a 57.
D.
.
19
17
19
Câu 36. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
.
B.
.
C. a 6.
D.
.
6
2
3
Câu 37. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD

√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng



a 2
a 2
A.
.
B. a 2.
C.
.
D. 2a 2.
4
2
Trang 3/5 Mã đề 1


Câu 38. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
B. .
C. a.
D.
.
A. .
3
2

2
d = 120◦ .
Câu 39. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B. 3a.
C.
.
D. 2a.
2
Câu 40. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng
abc b2 + c2
b a2 + c2
a b2 + c2
c a2 + b2
.
B. √
.
C. √
.
D. √
.
A. √

a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 41.
f (x), g(x) liên
đề nào sai? Z
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh Z
f (x)g(x)dx =

A.
Z
C.

f (x)dx g(x)dx.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.

B.
Z
D.

( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.


Câu 42.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
A.
dx = ln |x| + C, C là hằng số.
B.
dx = x + C, C là hằng số.
x
Z
Z
xα+1
C.
0dx = C, C là hằng số.
D.
xα dx =
+ C, C là hằng số.
α+1
Câu 43. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Chỉ có (I) đúng.

C. Cả hai đều sai.

D. Chỉ có (II) đúng.

Câu 44.

đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
C.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Câu 45. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Cả ba đáp án trên.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 46. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).

(II) kF(x) là một nguyên hàm của k f (x).
Trang 4/5 Mã đề 1


(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. (II) và (III).

C. (I) và (III).

D. Cả ba mệnh đề.

Câu 47. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. F(x) = G(x) trên khoảng (a; b).
D. Cả ba câu trên đều sai.
Câu 48. Cho
Z hai hàm yZ= f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =

g0 (x)dx.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Câu 49. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
B.
f (x)dx = f (x).
Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 50. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2. A

B
C

3.

4. A
D

5.
7.

D

6.
8. A

C

9. A

10. A


11.

12. A

C

13. A

14.

B

15. A

16.

B

17.

18. A

B

19. A
21.

D

23. A


D

22.

D

24. A

25.

D
C

27.
29.

20.

B

31.

26.

D

28.

D


30.

C

32.

C

33. A

34.

35. A

36. A

D
B

37.

C

38.

39.

C


40.

D

42.

D

41. A
43.
45.

D

C

44. A

B

46. A

47. A

48.

49. A

50.


1

D
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×