Tải bản đầy đủ (.pdf) (6 trang)

Đề ôn thpt toán 12 (391)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (114.11 KB, 6 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) − g(x)] = a − b.
B. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞
f (x) a
= .
D. lim [ f (x)g(x)] = ab.
C. lim
x→+∞
x→+∞ g(x)
b
1 − 2n
Câu 2. [1] Tính lim
bằng?
3n + 1
2
2
1
A. − .


B. .
C. 1.
D. .
3
3
3

x2 + 3x + 5
Câu 3. Tính giới hạn lim
x→−∞
4x − 1
1
1
B. 1.
C. 0.
D. .
A. − .
4
4
2−n
Câu 4. Giá trị của giới hạn lim
bằng
n+1
A. 0.
B. 2.
C. −1.
D. 1.
x−3
bằng?
Câu 5. [1] Tính lim

x→3 x + 3
A. 0.
B. 1.
C. −∞.
D. +∞.
x+1
bằng
Câu 6. Tính lim
x→+∞ 4x + 3
1
1
A. 1.
B. .
C. 3.
D. .
3
4
2
Câu 7. Giá trị giới hạn lim (x − x + 7) bằng?
x→−1
A. 7.
B. 5.
C. 9.
D. 0.
Câu 8. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
1 − n2

Câu 9. [1] Tính lim 2
bằng?
2n + 1
1
1
A. − .
B. .
2
3
4x + 1
Câu 10. [1] Tính lim
bằng?
x→−∞ x + 1
A. 2.
B. 4.

C.

1
.
2

C. −4.

D. 0.

D. −1.

Câu 11. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng

7
5
A. 6.
B. .
C. .
D. 9.
2
2
q
Câu 12. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [−1; 0].
C. m ∈ [0; 1].
D. m ∈ [0; 4].
Trang 1/5 Mã đề 1


Câu 13. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 2.
C. 1.
D. Vô nghiệm.
Câu 14. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. log2 2020.
C. 13.
D. 2020.


Câu 15. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. 62.
D. Vơ số.


Câu 16. [12215d] Tìm m để phương trình 4 x+
9
3
B. 0 ≤ m ≤ .
A. 0 < m ≤ .
4
4

1−x2



− 4.2 x+

1−x2

− 3m + 4 = 0 có nghiệm

C. m ≥ 0.

3

D. 0 ≤ m ≤ .
4

1
Câu 17. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 2 < m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.
Câu 18. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 3).
C. (2; 4; 6).
D. (2; 4; 4).
log(mx)
= 2 có nghiệm thực duy nhất
Câu 19. [1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0 ∨ m > 4.
B. m ≤ 0.
C. m < 0.
D. m < 0 ∨ m = 4.
1
Câu 20. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y

0
y
A. xy = −e + 1.
B. xy = −e − 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.
Câu 21. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.
Câu 22. Tính lim
A. 1.

B. 0.
1
1
1
+
+ ··· +
1.2 2.3
n(n + 1)
B. 2.

C. 1.

D. 2.

!


C. 0.

!
1
1
1
Câu 23. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
B. 2.
C. .
A. .
2
2
Câu 24. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 + n + 1
n2 − 2
A. un =
.
B.
u
=
.
C.
u
=

.
n
n
n2
(n + 1)2
5n − 3n2
n−1
Câu 25. Tính lim 2
n +2
A. 1.
B. 0.
C. 2.

D.

3
.
2

D. +∞.

D. un =

1 − 2n
.
5n + n2

D. 3.

Câu 26. Trong các mệnh đề dưới đây, mệnh đề nào sai?

!
un
A. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
Trang 2/5 Mã đề 1


!
un
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
!vn
un
= +∞.
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
Câu 27. Tính lim
A. 0.

7n2 − 2n3 + 1
3n3 + 2n2 + 1
2
B. - .
3

Câu 28. [3-1132d] Cho dãy số (un ) với un =
A. lim un = 0.
C. lim un = 1.

5
Câu 29. Tính lim
n+3
A. 2.

C. 1.

D.

7
.
3

1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
1
B. lim un = .
2
D. Dãy số un khơng có giới hạn khi n → +∞.

B. 3.

C. 1.

D. 0.

Câu 30. Dãy số nào sau đây có giới hạn khác 0?
sin n
n+1

.
B.
.
A.
n
n

1
1
C. √ .
D. .
n
n
Câu 31. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. 2a 6.
.
B. a 6.
C. a 3.
D.
2
[ = 60◦ , S O
Câu 32. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S BC) bằng



2a 57
a 57
a 57
.
B.
.
C. a 57.
.
A.
D.
19
19
17
Câu 33. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
.
B. √
.
C. √
.
D. 2
.
A. √
a + b2

2 a2 + b2
a2 + b2
a2 + b2
Câu 34. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng




a 3
2a 3
a 3
.
C.
.
D.
.
A. a 3.
B.
2
2
3
Câu 35. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
A. a.
B. .

C. .
D.
.
3
2
2

Câu 36. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 58
3a 38
3a
a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29
d = 120◦ .

Câu 37. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B.
.
C. 2a.
D. 3a.
2
Trang 3/5 Mã đề 1


[ = 60◦ , S O
Câu 38. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ A đến (S BC) bằng

√ với mặt đáy và S O = a.

a 57
a 57
2a 57
.
B.
.
C. a 57.
D.
.
A.
19

17
19
d = 30◦ , biết S BC là tam giác đều
Câu 39. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
9
13
26
16
Câu 40. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng





a 2
a 2
B. a 2.
C.
.
D.
.
A. 2a 2.
2
4
Câu 41. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
C.
dx = log |u(x)| + C.
u(x)
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 42. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) xác định trên K.

B. f (x) có giá trị lớn nhất trên K.
D. f (x) có giá trị nhỏ nhất trên K.

Câu 43. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Chỉ có (I) đúng.

C. Chỉ có (II) đúng.

D. Cả hai đều đúng.

Câu 44. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Chỉ có (I) đúng.

C. Cả hai câu trên đúng. D. Cả hai câu trên sai.

Câu 45.
!0 nào sau đây sai?
Z Mệnh đề
A.

f (x)dx = f (x).
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Trang 4/5 Mã đề 1


Câu 46. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. F(x) = G(x) trên khoảng (a; b).
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
Câu 47. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.

B. Câu (II) sai.

C. Khơng có câu nào D. Câu (III) sai.
sai.
Câu 48. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.

B. 1.

C. 2.

D. 4.

Câu 49. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 50.
Z Trong cácα+1khẳng định sau, khẳng định nào sai? Z
1
x
+ C, C là hằng số.
B.
dx = ln |x| + C, C là hằng số.
A.
xα dx =
α+1
Z
Z x
C.


dx = x + C, C là hằng số.

D.

0dx = C, C là hằng số.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2. A

C

3. A

4.

5. A

6.

7.


C

9. A

B

10.

B
B

B

12.

13.

B

14. A

17.

D

16.

C
B


18.

C
C

19.

D

20.

21.

D

22. A

23.

B

24.

25.

B

26.

27.


B

28.

29.

D

8.

11.
15.

C

D

D
C
B

30. A

31.

B

32. A


33.

B

34.

35. A

D

36. A

37.

B

38. A

39.

B

40.

C

41.

C


42. A

43.

C

44.

C

46.

C

D

45.
47.

48. A

C

49. A

50. A

1




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×