Tải bản đầy đủ (.pdf) (6 trang)

Đề ôn thpt toán 12 (243)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (113.34 KB, 6 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

x2 − 12x + 35
25 − 5x

Câu 1. Tính lim
x→5

2
A. .
5

B. +∞.

2−n
bằng
n+1
A. 2.
B. −1.
2x + 1
Câu 3. Tính giới hạn lim
x→+∞ x + 1
1
B. 1.


A. .
2

2
C. − .
5

D. −∞.

C. 1.

D. 0.

C. −1.

D. 2.

C. 3.

D. 0.

Câu 2. Giá trị của giới hạn lim

x3 − 1
x−1

Câu 4. Tính lim
x→1

A. −∞.


B. +∞.

Câu 5. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
C. lim qn = 0 (|q| > 1).

B. lim un = c (un = c là hằng số).
1
D. lim k = 0.
n

Câu 6. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim+ f (x) = lim− f (x) = a.
x→a

x→a

x→a

x→a

D. lim f (x) = f (a).

C. f (x) có giới hạn hữu hạn khi x → a.

x→a




4n2 + 1 − n + 2
Câu 7. Tính lim
bằng
2n − 3
A. +∞.
B. 2.
x+1
bằng
6x − 2
1
1
B. .
A. .
3
6
x+1
Câu 9. Tính lim
bằng
x→+∞ 4x + 3
1
A. 3.
B. .
3
2n + 1
Câu 10. Tính giới hạn lim
3n + 2
3

A. .
B. 0.
2

C. 1.

D.

3
.
2

C. 1.

D.

1
.
2

C. 1.

D.

1
.
4

1
.

2

D.

2
.
3

Câu 8. Tính lim

x→−∞

C.


Câu 11. [12215d] Tìm m để phương trình 4 x+
9
3
A. 0 ≤ m ≤ .
B. 0 ≤ m ≤ .
4
4

1−x2



− 3m + 4 = 0 có nghiệm
3
C. 0 < m ≤ .

D. m ≥ 0.
4

− 4.2 x+

1−x2

Câu 12. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vô nghiệm.
C. 3.
D. 2.
Trang 1/5 Mã đề 1


log 2x

Câu 13. [1229d] Đạo hàm của hàm số y =
x2
1 − 2 ln 2x
1
1 − 4 ln 2x
1 − 2 log 2x
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
D. y0 =

.
3
x ln 10
2x ln 10
2x ln 10
x3

Câu 14. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 63.
C. Vô số.
D. 64.
Câu 15. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m ≤ .
C. m < .
D. m ≥ .
A. m > .
4
4
4
4
Câu 16. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 1.

C. 3.
D. 2.
1
Câu 17. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 0 < m ≤ 1.
D. 2 ≤ m ≤ 3.
Câu 18. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 3).
C. (2; 4; 6).
D. (2; 4; 4).
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e − 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.

Câu 19. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.

Câu 20. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.

B. m ≥ 3.
C. m > 3.
D. m < 3.
cos n + sin n
Câu 21. Tính lim
n2 + 1
A. +∞.
B. 1.
C. 0.
D. −∞.
un
Câu 22. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. 1.
C. −∞.
D. 0.
Câu 23. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 − 3n
A. un =
.
B. un =
.
5n − 3n2
n2

1 − 2n
C. un =
.

5n + n2

n2 + n + 1
D. un =
.
(n + 1)2

1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 24. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
1
A. lim un = .
B. lim un = 0.
2
C. Dãy số un không có giới hạn khi n → +∞.
D. lim un = 1.
7n2 − 2n3 + 1
Câu 25. Tính lim 3
3n + 2n2 + 1
2
A. 0.
B. - .
3

C.

7
.
3


D. 1.

Câu 26. Trong các mệnh đề dưới đây, mệnh đề nào sai?
!
un
A. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
Trang 2/5 Mã đề 1


!
un
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
Câu 27. Tính lim
A. 3.

5
n+3

B. 1.

!
1
1
1
Câu 28. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 0.
B. .
2

C. 2.

D. 0.

C. 1.

D. 2.

Câu 29. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 2.


Câu 30. Dãy số nào sau đây có giới hạn khác 0?
n+1
1
.
B.
A. √ .
n
n

C. 1.

C.

1
.
n

D. 3.

D.

sin n
.
n

Câu 31. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng




a 6
a 6
a 6
.
B. a 6.
C.
.
D.
.
A.
2
6
3
Câu 32. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
2a
8a
5a
.
B. .
C.
.
D.
.
A.
9
9
9

9

Câu 33. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 58
a 38
3a 38
3a
A.
.
B.
.
C.
.
D.
.
29
29
29
29
d = 120◦ .
Câu 34. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A.
.

B. 2a.
C. 4a.
D. 3a.
2
Câu 35. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 6.
B.
.
C. a 3.
D. 2a 6.
2
[ = 60◦ , S O
Câu 36. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S
√ BC) bằng


a 57
a 57
2a 57
A. a 57.
B.
.

C.
.
D.
.
17
19
19
Trang 3/5 Mã đề 1


Câu 37. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
.
B. √
.
C. 2
.
A. √
.
D.

a + b2
a2 + b2
2 a2 + b2
a2 + b2
d = 30◦ , biết S BC là tam giác đều

Câu 38. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
13
16
26
9
Câu 39. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab
ab
A. √
.
B. √

.
C. 2
.
.
D. √
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
0 0 0 0
0
Câu 40.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 6
a 3
a 6
a 6
A.
.
B.
.
C.
.
D.
.
3
2
2

7

Câu 41. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 42. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) trên khoảng (a; b).
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
Câu 43. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.

B. Câu (I) sai.

C. Câu (III) sai.

D. Khơng có câu nào
sai.

Câu 44. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).

(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.

B. (II) và (III).

C. (I) và (II).

D. (I) và (III).
Trang 4/5 Mã đề 1


Câu 45.
đề nào sai? Z
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh Z
A.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
C.
f (x)g(x)dx =
f (x)dx g(x)dx.

D.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Câu 46. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Chỉ có (II) đúng.

Câu 47. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) xác định trên K.

C. Chỉ có (I) đúng.

D. Cả hai câu trên đúng.

B. f (x) có giá trị lớn nhất trên K.
D. f (x) liên tục trên K.

Câu 48. Mệnh đề nào sau đây sai?

Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
f (x)dx = f (x).
B.

f (x)dx = F(x) + C.

C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 49.
Z Các khẳng định nào sau
Z đây là sai?
f (x)dx = F(x) +C ⇒

A.
Z
C.

f (x)dx = F(x) + C ⇒

f (u)dx = F(u) +C. B.

Z

f (t)dt = F(t) + C. D.

Z
Z


!0
f (x)dx = f (x).
Z
k f (x)dx = k
f (x)dx, k là hằng số.

Câu 50.
Z Trong cácα+1khẳng định sau, khẳng định nào sai? Z
x
A.
xα dx =
+ C, C là hằng số.
B.
dx = x + C, C là hằng số.
α+1
Z
Z
1
C.
dx = ln |x| + C, C là hằng số.
D.
0dx = C, C là hằng số.
x
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 1


ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.
D

3.
C

6.

7.

C

8.

11.

D
B

13. A
15.

D

12.


D

B

20.

23.

C

24. A

B

26.

27.

D

30.

D
B
C
B

32.

C

B

D

34. A
D

36.

35. A
37.

D

38. A

39.

D

40. A

41. A

42.

43.
47.

B


28.

B

31.

45.

C

18.
22.

33.

D

16.

B

C

29.

B

10.


21.
25.

D

14. A

17. A
19.

C

4.

5.
9.

B

D

44.

B
C

46.

C
D


48.

49. A

50. A

1

D
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×