Tải bản đầy đủ (.pdf) (6 trang)

Đề ôn thpt toán 12 (232)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (114.22 KB, 6 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

2x + 1
x→+∞ x + 1
B. −1.

Câu 1. Tính giới hạn lim
A. 1.

x+1
bằng
Câu 2. Tính lim
x→−∞ 6x − 2
1
1
A. .
B. .
6
2
x−3
Câu 3. [1] Tính lim
bằng?
x→3 x + 3
A. 0.


B. 1.
Câu 4. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 5.
B. 0.

x2 + 3x + 5
Câu 5. Tính giới hạn lim
x→−∞
4x − 1
1
1
B. − .
A. .
4
4
2
1−n
bằng?
Câu 6. [1] Tính lim 2
2n + 1
1
A. 0.
B. − .
2
2
Câu 7. Giá trị của lim (3x − 2x + 1)
x→1
A. 3.
B. 2.


C. 2.

D.

1
.
2

C. 1.

D.

1
.
3

C. +∞.

D. −∞.

C. 9.

D. 7.

C. 1.

D. 0.

C.


1
.
2

C. +∞.

Câu 8. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 + 2 sin 2x.
B. −1 + 2 sin 2x.
C. 1 − sin 2x.

D.

1
.
3

D. 1.
D. −1 + sin x cos x.

Câu 9. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Câu 10. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a
C. lim+ f (x) = lim− f (x) = a.
D. lim f (x) = f (a).
x→a

x→a

x→a

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



9 11 + 19
2 11 − 3
18 11 − 29
9 11 − 19
A. Pmin =
. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
9
3
21
9

Câu 12. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 2.
C. Vô nghiệm.
D. 3.
log(mx)
Câu 13. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0 ∨ m > 4.
C. m < 0.
D. m ≤ 0.
Câu 11. [12210d] Xét các số thực dương x, y thỏa mãn log3

Trang 1/5 Mã đề 1


Câu 14.

[12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3

có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [0; 1].
B. m ∈ [−1; 0].

C. m ∈ [0; 2].


q
x+ log23 x + 1+4m−1 = 0

D. m ∈ [0; 4].

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = −e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey + 1.

Câu 15. [3-12217d] Cho hàm số y = ln
A. xy0 = ey − 1.

Câu 16. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. 9.
B. .
C. .
D. 6.
2
2
1
Câu 17. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm

3
A. 2 ≤ m ≤ 3.
B. 2 < m ≤ 3.
C. 0 < m ≤ 1.
D. 0 ≤ m ≤ 1.
1
Câu 18. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 3.
C. 4.
D. 2.


Câu 19. [12215d] Tìm m để phương trình 4 x+
9
3
B. 0 ≤ m ≤ .
A. 0 < m ≤ .
4
4

1−x2



− 3m + 4 = 0 có nghiệm
3
C. 0 ≤ m ≤ .

D. m ≥ 0.
4

− 4.2 x+

1−x2

Câu 20. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 6).
C. (1; 3; 2).
D. (2; 4; 4).
12 + 22 + · · · + n2
n3
2
B. .
3

Câu 21. [3-1133d] Tính lim
A. 0.

C. +∞.

D.

1
.
3


Câu 22. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
= +∞.
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn !
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Câu 23. Tính lim
A. 2.

n−1
n2 + 2

B. 3.

C. 0.

D. 1.

Câu 24. Phát biểu nào sau đây là sai?
1

A. lim k = 0 với k > 1.
n
C. lim un = c (Với un = c là hằng số).

B. lim qn = 1 với |q| > 1.
1
D. lim √ = 0.
n
!
1
1
1
Câu 25. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. .
B. 2.
C. +∞.
D. .
2
2
Trang 2/5 Mã đề 1


1 + 2 + ··· + n
Câu 26. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?

n2 + 1
1
A. lim un = .
B. lim un = 0.
2
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = 1.
5
Câu 27. Tính lim
n+3
A. 1.
B. 3.
C. 0.
D. 2.
un
Câu 28. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. 0.
C. −∞.
D. 1.
Câu 29. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.

B. 0.

C. 3.


D. 2.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 30. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 4.
B. 5.
C. 2.
D. 3.
Câu 31. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng
b a2 + c2
c a2 + b2
abc b2 + c2
a b2 + c2
.
B. √
.
C. √
.
D. √

.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
d = 30◦ , biết S BC là tam giác đều
Câu 32. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
16
9
13
26
Câu 33. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng

(S AB)
a
5a
2a
8a
A. .
B.
.
C.
.
D.
.
9
9
9
9
3a
Câu 34. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

2a
a
a
a 2
A.
.
B. .

C. .
D.
.
3
3
4
3
[ = 60◦ , S O
Câu 35. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S BC) bằng


2a 57
a 57
a 57
A.
.
B.
.
C. a 57.
D.
.
19
19
17
Câu 36. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1

ab
ab
1
A. √
.
B. 2
.
C.
.
D.
.


a + b2
2 a2 + b2
a2 + b2
a2 + b2
Trang 3/5 Mã đề 1


Câu 37. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
A.
.
B. a 3.

C.
.
D. a 2.
3
2
Câu 38. [2] Cho chóp đều S .ABCD có đáy là hình vuông tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng



a 6
A.
.
B. a 6.
C. a 3.
D. 2a 6.
2

Câu 39. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 58
a 38
3a
3a 38
.

B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 40. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
2a 3
a 3
A.
.
B. a 3.
C.
.
D.
.
2
2
3
Câu 41. Trong các khẳng định sau, khẳng định nào sai?√

A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D. Cả ba đáp án trên.
Câu 42.
!0 nào sau đây sai?
Z Mệnh đề
f (x)dx = f (x).
A.
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

Câu 43.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
( f (x) + g(x))dx =

A.
Z
C.

( f (x) − g(x))dx =

f (x)dx +

Z


g(x)dx.

B.

Z
f (x)dx −

Z
g(x)dx.

Câu 44. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) liên tục trên K.

D.

f (x)g(x)dx =
f (x)dx g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.

B. f (x) có giá trị nhỏ nhất trên K.
D. f (x) có giá trị lớn nhất trên K.

Câu 45. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. Cả ba câu trên đều sai.

D. F(x) = G(x) trên khoảng (a; b).
Câu 46. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Trang 4/5 Mã đề 1


Z

g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
B. Nếu

f (x)dx =

Z

0


Câu 47. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Khơng có câu nào C. Câu (I) sai.
D. Câu (II) sai.
sai.
Câu 48. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
dx = log |u(x)| + C.
D.
u(x)
Câu 49. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 50. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên

A. Chỉ có (II) đúng.
B. Chỉ có (I) đúng.

C. Cả hai đều đúng.

D. Cả hai đều sai.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2. A

C

3. A

C

4.

5.

B


6.

B

7.

B

8.

B

11.

D

10.

9. A

12.

B

13. A

14.

B


15. A

16.

17.

B

18. A

B
C

19.

25.

20.
D

21.
23.

24.

B
C

28.

D
D

36.
C

38.

C
B

40.

B

41. A
B

45. A
49.

C

34. A

B

37.

47.


B

32.

33.

43.

B

30. A

31. A

39.

C

26. A

29.

35.

B

22.

C


27.

C

D

42.

C

44.

C

46. A
48.

B

50. A

C

1

D




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×