Tải bản đầy đủ (.pdf) (6 trang)

Đề ôn thpt toán 12 (223)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (113.13 KB, 6 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

x+2
bằng?
x
B. 3.
x−3
bằng?
Câu 2. [1] Tính lim
x→3 x + 3
A. −∞.
B. +∞.
1 − 2n
Câu 3. [1] Tính lim
bằng?
3n + 1
2
2
A. − .
B. .
3
3
2x + 1
Câu 4. Tính giới hạn lim


x→+∞ x + 1
A. −1.
B. 2.
Câu 1. Tính lim
x→2
A. 0.

C. 2.

D. 1.

C. 0.

D. 1.

C.

1
.
3

D. 1.

C.

1
.
2

D. 1.


Câu 5. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Câu 6. Giá trị của lim (3x2 − 2x + 1)
x→1
A. +∞.
B. 2.
2n − 3
bằng
Câu 7. Tính lim 2
2n + 3n + 1
A. −∞.
B. 0.
3
x −1
Câu 8. Tính lim
x→1 x − 1
A. −∞.
B. 3.

C. 1.

D. 3.

C. 1.

D. +∞.


C. +∞.

D. 0.

Câu 9. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x)g(x)] = ab.
B. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞
f (x) a
C. lim
= .
D. lim [ f (x) + g(x)] = a + b.
x→+∞ g(x)
x→+∞
b


4n2 + 1 − n + 2
Câu 10. Tính lim
bằng
2n − 3
3
A. +∞.
B. .
C. 2.
D. 1.

2
Câu 11. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 6).
C. (2; 4; 4).
D. (1; 3; 2).
Câu 12. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. Vô nghiệm.
C. 1.
D. 2.
Câu 13. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
"
!
5
5
A. (1; 2).
B.
;3 .
C. [3; 4).
D. 2; .
2
2


ab.

Trang 1/5 Mã đề 1



log 2x

Câu 14. [1229d] Đạo hàm của hàm số y =
x2
1 − 4 ln 2x
1 − 2 ln 2x
1 − 2 log 2x
1
A. y0 =
.
B. y0 = 3
.
C. y0 =
.
D. y0 = 3
.
3
3
2x ln 10
x ln 10
x
2x ln 10
1
Câu 15. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 0 ≤ m ≤ 1.
C. 2 < m ≤ 3.

D. 2 ≤ m ≤ 3.
Câu 16. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≤ 3.
C. m ≥ 3.
D. m < 3.
Câu 17. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. Vô số.
C. 2.
D. 3.
Câu 18. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. 2.
D. Vô nghiệm.

Câu 19. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. Vô số.
C. 64.
D. 62.
q
2
Câu 20. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h

có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 2].
C. m ∈ [0; 1].
D. m ∈ [−1; 0].
Câu 21. Tính lim
A. 0.

7n2 − 2n3 + 1
3n3 + 2n2 + 1
7
B. .
3

Câu 22. [3-1132d] Cho dãy số (un ) với un =
1
A. lim un = .
2
C. lim un = 1.

C. 1.

2
D. - .
3

1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
B. lim un = 0.


D. Dãy số un khơng có giới hạn khi n → +∞.
!
3n + 2
2
Câu 23. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 3.
C. 4.
D. 5.
Câu 24. Dãy số nào sau đây có giới hạn khác 0?
sin n
1
A.
.
B. √ .
n
n

1
.
n

D.

n+1
.

n

2n2 − 1
Câu 25. Tính lim 6
3n + n4
A. 2.
B. 0.

C. 1.

D.

2
.
3

n−1
Câu 26. Tính lim 2
n +2
A. 0.
B. 2.

C. 1.

D. 3.

C.

Câu 27. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.

Trang 2/5 Mã đề 1


(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.

B. 0.

C. 3.

Câu 28. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. 1.

B. −∞.

Câu 29. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 + n + 1
A. un =
.
B. un =
.
n2
(n + 1)2

C. +∞.
1 − 2n
C. un =
.

5n + n2

D. 1.
un
bằng
vn
D. 0.
n2 − 2
D. un =
.
5n − 3n2

12 + 22 + · · · + n2
n3
1
2
A. +∞.
B. .
C. .
D. 0.
3
3
Câu 31. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
1
ab
A. 2
.

C. √
.
D. √
.
.
B. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 30. [3-1133d] Tính lim

Câu 32. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



a b2 + c2
abc b2 + c2
c a2 + b2
b a2 + c2
A. √
.
B. √
.
C. √
.

D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 33. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
a
8a
5a
.
B.
.
C. .
D.
.
A.
9
9
9
9
Câu 34. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3

a 3
2a 3
A.
.
B.
.
C. a 3.
D.
.
2
3
2
[ = 60◦ , S O
Câu 35. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S BC) bằng


a 57
2a 57
a 57
A.
.
B.
.
C. a 57.
D.
.
17
19

19
Câu 36. [2] Cho chóp đều S .ABCD có đáy là hình vuông tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. 2a 6.
B. a 6.
C.
.
D. a 3.
2
[ = 60◦ , S O
Câu 37. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S
√ BC) bằng


a 57
a 57
2a 57
A.
.
B. a 57.
C.
.
D.

.
19
17
19
Câu 38. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
.
B.
.
C.
.
D. a 6.
2
3
6
Trang 3/5 Mã đề 1


0 0 0 0
0
Câu 39.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC

a 3
a 6
a 6
a 6
.
B.
.
C.
.
D.
.
A.
3
2
7
2
Câu 40. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
A. a 2.
B. a 3.
C.
.
D.
.

2
3
Câu 41.
đề nào sai? Z
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh Z

A.
Z
C.

( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
f (x)g(x)dx =
f (x)dx g(x)dx.

Câu 42. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) liên tục trên K.

B.
Z
D.

B. f (x) có giá trị nhỏ nhất trên K.
D. f (x) có giá trị lớn nhất trên K.

Câu 43.
! định nào sau đây là sai?

Z Các khẳng
0

f (x)dx = f (x).

( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.

Z

Z

f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
Z
Z
Z
Z
C.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. D.
k f (x)dx = k
f (x)dx, k là hằng số.

A.

B.


Câu 44.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
k f (x)dx = k

A.

f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
B.

Câu 45. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Chỉ có (II) đúng.

C. Cả hai đều đúng.

D. Cả hai đều sai.

Câu 46. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
C.
f (x)dx = f (x).
Z
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
Câu 47. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
Trang 4/5 Mã đề 1



(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Cả hai câu trên đúng. C. Chỉ có (I) đúng.

D. Cả hai câu trên sai.

Câu 48. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
C. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.

Câu 49. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. F(x) = G(x) trên khoảng (a; b).
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
Câu 50. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
dx = log |u(x)| + C.
D.
u(x)
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2.

C


3. A

C

4.

B

5.

B

6.

B

7.

B

8.

B

9.

C

10.


D
D

11.

B

12.

13.

B

14.

15.

C

16.

17.

C

18. A

19.

D


20.

21.

D

22. A

23.
25.

C
D

24.

C

D

26. A

B

28.

27. A
29.
31.


B

C

30.

B

D
B

32. A

33.

D

34.

B

35.

D

36.

B


37.

D

38.

C

40.

C
C

39. A
41.

C

42.

43.

C

44. A

45.

B


46.

47.

B

48. A

49.

50.

C

1

B
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×