Tải bản đầy đủ (.pdf) (6 trang)

Đề ôn thpt toán 12 (211)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (114.65 KB, 6 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

2−n
bằng
Câu 1. Giá trị của giới hạn lim
n+1
A. 0.
B. 1.
2n + 1
Câu 2. Tìm giới hạn lim
n+1
A. 2.
B. 3.
4x + 1
Câu 3. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. 2.
2
1−n
Câu 4. [1] Tính lim 2
bằng?
2n + 1


1
1
A. .
B. .
2
3
x−3
bằng?
Câu 5. [1] Tính lim
x→3 x + 3
A. −∞.
B. 0.


4n2 + 1 − n + 2
bằng
Câu 6. Tính lim
2n − 3
A. 2.
B. 1.

C. 2.

D. −1.

C. 0.

D. 1.

C. 4.


D. −1.

C. 0.

1
D. − .
2

C. +∞.

D. 1.

C.

3
.
2

D. +∞.

2n − 3
bằng
Câu 7. Tính lim 2
2n + 3n + 1
A. −∞.
B. 0.
C. +∞.
1 − 2n
Câu 8. [1] Tính lim

bằng?
3n + 1
2
1
A. 1.
B. .
C. .
3
3
Câu 9. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.

2
D. − .
3

Câu 10.! Dãy số nào sau đây có giới! hạn là 0?
n
n
5
5
A.
.
B. − .
3
3


!n
4
D.
.
e

!n
1
C.
.
3

D. 1.

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = ey − 1.
C. xy0 = ey + 1.
D. xy0 = −ey + 1.

Câu 11. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey − 1.

Câu 12. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7

A. 6.
B. .
C. 9.
D. .
2
2

2
Câu 13. [1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. Vô số.
C. 64.
D. 63.
Trang 1/5 Mã đề 1


Câu 14. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



18 11 − 29

9 11 + 19
2 11 − 3
9 11 − 19
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
A. Pmin =
9
21
9
3
log 2x
Câu 16. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1
1 − 4 ln 2x
1 − 2 log 2x
0
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
D.
y
=

.
x ln 10
2x ln 10
2x3 ln 10
x3
1
Câu 17. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 1.
C. 4.
D. 2.

Câu 15. [12210d] Xét các số thực dương x, y thỏa mãn log3





− 3m + 4 = 0 có nghiệm
3
3
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
4
4
q
Câu 19. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i

h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 2].
C. m ∈ [−1; 0].
D. m ∈ [0; 1].
Câu 18. [12215d] Tìm m để phương trình 4 x+
9
A. m ≥ 0.
B. 0 ≤ m ≤ .
4

1−x2

− 4.2 x+

1−x2

Câu 20. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 2.
B. Vô số.
C. 1.
D. 3.
7n2 − 2n3 + 1
Câu 21. Tính lim 3
3n + 2n2 + 1
7
2
A. 1.

B. .
C. 0.
D. - .
3
3
cos n + sin n
Câu 22. Tính lim
n2 + 1
A. −∞.
B. 0.
C. +∞.
D. 1.
1 + 2 + ··· + n
Câu 23. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. Dãy số un không có giới hạn khi n → +∞.
B. lim un = .
2
C. lim un = 0.
D. lim un = 1.
!
1
1
1
Câu 24. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n

3
5
A. .
B. .
C. 2.
D. +∞.
2
2
Câu 25. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 2.

C. 3.

D. 1.
Trang 2/5 Mã đề 1


Câu 26. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
n2 − 3n
A. un =
.
B.
u
=

.
n
(n + 1)2
n2
Câu 27. Tính lim

C. un =

2n2 − 1
3n6 + n4

A. 1.

B. 2.

C.

1 − 2n
.
5n + n2

2
.
3

Câu 28. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. −∞.

B. 0.


D. un =

C. 1.

n2 − 2
.
5n − 3n2

D. 0.
un
bằng
vn
D. +∞.

Câu 29. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
!
un
= −∞.
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
v
n
!
un
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.

vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
Câu 30. Tính lim
A. 2.

n−1
n2 + 2

B. 1.

C. 0.

D. 3.

Câu 31. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
ab
1
A. √
.
B. 2
.
D. √
.
.
C. √
2
a +b

2 a2 + b2
a2 + b2
a2 + b2
Câu 32. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
.
D. a 3.
B. a 6.
C.
A. 2a 6.
2
Câu 33. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
2a
8a
5a
.
B. .
C.
.
D.
.
A.

9
9
9
9
d = 30◦ , biết S BC là tam giác đều
Câu 34. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
9
16
26
13
Câu 35. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng




a 2
a 2
A. a 2.
B.
.
C. 2a 2.
D.
.
2
4
[ = 60◦ , S O
Câu 36. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.√Khoảng cách từ O đến (S
√ BC) bằng


2a 57
a 57
a 57
A. a 57.
B.
.
C.
.
D.
.
19
17

19
Trang 3/5 Mã đề 1



Câu 37. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a
3a 58
a 38
3a 38
.
B.
.
C.
.
D.
.
A.
29
29
29
29
d = 120◦ .
Câu 38. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng

3a
A. 4a.
B. 3a.
C. 2a.
D.
.
2
Câu 39. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
.
B. a 6.
.
D.
.
C.
6
2
3
Câu 40. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng




a 2
a 2
.
B.
.
C. a 3.
A.
D. a 2.
3
2
Câu 41. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
B.
f (x)dx = f (x).
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

Câu 42. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. Cả ba câu trên đều sai.
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
Câu 43. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.

C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
dx = log |u(x)| + C.
D.
u(x)
Câu 44.
Z Các khẳng định
Z nào sau đây là sai?
k f (x)dx = k

A.
Z
C.

Z

!0

f (x)dx, k là hằng số.
B.
f (x)dx = f (x).
Z
Z
Z
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. D.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.


Câu 45.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
A.
Z
B.

[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Trang 4/5 Mã đề 1


Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.

C.

Câu 46. Hàm số f có nguyên hàm trên K nếu

A. f (x) xác định trên K.
C. f (x) có giá trị nhỏ nhất trên K.

B. f (x) có giá trị lớn nhất trên K.
D. f (x) liên tục trên K.

Câu 47. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.

B. Câu (I) sai.

C. Khơng có câu nào D. Câu (III) sai.
sai.
Câu 48. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.

B. 3.

C. 4.

D. 2.


Câu 49. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. Cả ba đáp án trên.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 50. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
B. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

3.

2. A
4.

C

5.

B

6.

7.

B

8.
C

9.

11.

B
D
C

10.

D

12.

B

13. A

C

14.
D

15.
17.

D

16. A

B


19.

C

18.
C

21.

20. A
D

22.

B

23.

B

24.

C

25.

B

26.


C

27.

D

28.

29. A

B

30.

C

31.

D

32.

33.

D

34.

D


36.

D

38.

D

35.

B

37.

C

39. A
41.

C

43.
45.
47.
49.

D

B


40.

B

42.

B

44.

C

46.

B

48.

C

50.

D

1

D
B
D




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×