Tải bản đầy đủ (.pdf) (6 trang)

Đề ôn thpt toán 12 (252)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (111.29 KB, 6 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

2n + 1
Câu 1. Tìm giới hạn lim
n+1
A. 3.
B. 2.
1 − 2n
bằng?
Câu 2. [1] Tính lim
3n + 1
2
1
B. − .
A. .
3
3
x−3
Câu 3. [1] Tính lim
bằng?
x→3 x + 3
A. 0.
B. +∞.
Câu 4. Giá trị giới hạn lim (x2 − x + 7) bằng?


x→−1
A. 5.
B. 9.
Câu 5. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
n
C. lim qn = 0 (|q| > 1).
x2 − 9
Câu 6. Tính lim
x→3 x − 3
A. +∞.

B. 6.

Câu 7. Dãy số
!n nào có giới hạn bằng 0?
6
n3 − 3n
A. un =
.
B. un =
.
5
n+1

C. 0.

D. 1.


C. 1.

D.

C. 1.

D. −∞.

C. 0.

D. 7.

B. lim un = c (un = c là hằng số).
1
D. lim = 0.
n

C. 3.

D. −3.

!n
−2
C. un =
.
3

D. un = n2 − 4n.

x+1

Câu 8. Tính lim
bằng
x→−∞ 6x − 2
1
1
B. .
C. 1.
A. .
2
3
2n + 1
Câu 9. Tính giới hạn lim
3n + 2
2
3
A. .
B. 0.
C. .
3
2
2
2
0
Câu 10. Cho f (x) = sin x − cos x − x. Khi đó f (x) bằng
A. −1 + sin x cos x.
B. 1 + 2 sin 2x.
C. −1 + 2 sin 2x.
Câu 11. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.


B. 3.

2
.
3

C. 2.

D.

1
.
6

D.

1
.
2

D. 1 − sin 2x.
1
3|x−1|

= 3m − 2 có nghiệm duy

D. 1.

1

. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey − 1.

Câu 12. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey + 1.

Câu 13. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 13.
C. log2 13.
D. 2020.
log(mx)
Câu 14. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m ≤ 0.
C. m < 0 ∨ m > 4.
D. m < 0 ∨ m = 4.
Trang 1/5 Mã đề 1


Câu 15. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1

1
1
A. m < .
B. m ≥ .
C. m ≤ .
D. m > .
4
4
4
4




Câu 16. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
9
3
A. 0 < m ≤ .
B. m ≥ 0.
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
4
4
4
Câu 17. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 3).
C. (2; 4; 4).

D. (2; 4; 6).
2

2

Câu 18. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 1.
C. 2.
D. 3.
Câu 19. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. Vô nghiệm.
C. 3.
D. 1.
Câu 20. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. Vô nghiệm.
C. 1.
D. 3.
un
Câu 21. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. 0.
C. 1.
D. −∞.
5
Câu 22. Tính lim

n+3
A. 0.
B. 2.
C. 1.
D. 3.
Câu 23. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
!
un
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
Câu 24. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
A. √ .
B.
.
n
n
cos n + sin n

n2 + 1
B. +∞.
2
2n − 1
Câu 26. Tính lim 6
3n + n4
A. 1.
B. 0.
Câu 25. Tính lim
A. 1.

7n2 − 2n3 + 1
Câu 27. Tính lim 3
3n + 2n2 + 1
7
A. .
B. 1.
3
12 + 22 + · · · + n2
Câu 28. [3-1133d] Tính lim
n3
1
2
A. .
B. .
3
3

C.


1
.
n

D.

n+1
.
n

C. −∞.

D. 0.

C. 2.

D.

2
C. - .
3

D. 0.

C. +∞.

D. 0.

2
.

3

Trang 2/5 Mã đề 1


Câu 29. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 − 2
.
B.
u
=
.
A. un =
n
5n − 3n2
n2
!
1
1
1
Câu 30. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)

C. un =

n2 + n + 1

.
(n + 1)2

D. un =

1 − 2n
.
5n + n2

3
.
D. 2.
2
Câu 31. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a
a
a 3
.
B. .
C. .
D. a.
A.
2
2
3
0 0 0 0
0
Câu 32.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC

√ bằng
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
2
7
3
Câu 33. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
A.
.
B. a 3.
C.
.
D. a 2.

2
3
0 0 0 0
Câu 34. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1
A. 2
.
B. √
.
C. √
.
D. √
.
2
2
2
2
2
a +b
a +b
a +b
2 a2 + b2
A. 0.

B. 1.


C.

[ = 60◦ , S O
Câu 35. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc

√ với mặt đáy và S O = a. Khoảng cách từ A đến (S
√ BC) bằng

a 57
2a 57
a 57
.
B. a 57.
.
D.
.
A.
C.
19
17
19
d = 120◦ .
Câu 36. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 2a.
B. 4a.
C.
.

D. 3a.
2
Câu 37. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng
b a2 + c2
c a2 + b2
abc b2 + c2
a b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
3a
Câu 38. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)

bằng

a
a
2a
a 2
A. .
B. .
C.
.
D.
.
4
3
3
3
Câu 39. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
.
B.
.
C. a 6.
D.

.
2
3
6
Câu 40. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
2a 3
a 3
A.
.
B.
.
C.
.
D. a 3.
3
2
2
Trang 3/5 Mã đề 1


Câu 41. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.

A. Câu (II) sai.

B. Câu (III) sai.

C. Khơng có câu nào D. Câu (I) sai.
sai.
Câu 42. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 3.

C. 1.

D. 4.

Câu 43.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
A.
Z
C.

( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z

f (x)g(x)dx =
f (x)dx g(x)dx.

k f (x)dx = f

B.
Z
D.

f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.

Câu 44. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
dx = log |u(x)| + C.
D.
u(x)
Câu 45. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.

B. Chỉ có (II) đúng.

C. Chỉ có (I) đúng.

D. Cả hai đều sai.

Câu 46. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. Cả ba đáp án trên.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 47.
Z Trong cácα+1khẳng định sau, khẳng định nào sai? Z
x
A.
xα dx =
+ C, C là hằng số.
B.
dx = x + C, C là hằng số.
α+1
Z
Z
1
C.
0dx = C, C là hằng số.
D.
dx = ln |x| + C, C là hằng số.
x
Trang 4/5 Mã đề 1



Câu 48. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. F(x) = G(x) trên khoảng (a; b).
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
Câu 49.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
A.
Z
B.

[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =

f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
C.

Câu 50. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
B.
f (x)dx = f (x).
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

3. A

2.


B

4.

B
B

5.

C

6.

7.

C

8.

9. A
11.

D

D

10.

C


12.

C

13.

C

14.

D

15.

C

16.

D

17.

D

19. A

18.

C


20.

C

21.

B

22. A

23.

B

24.

25.

D

27.

26.

C

D
B

28. A


29.

D

30.

31.

D

32.

B
D

33. A

34.

35. A

36.

C
C

37.

D


38.

39.

D

40. A

41.

C

42.

43.

C

44.

45.

46.

B

B
D
C


48.

47. A
49.

B

50.

B

1

D
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×