Tải bản đầy đủ (.pdf) (6 trang)

Đề ôn thpt toán 12 (251)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (113.54 KB, 6 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

1 − 2n
Câu 1. [1] Tính lim
bằng?
3n + 1
1
2
B. .
A. − .
3
3
x−2
Câu 2. Tính lim
x→+∞ x + 3
2
A. − .
B. −3.
3
2x + 1
Câu 3. Tính giới hạn lim
x→+∞ x + 1
1
A. 2.


B. .
2
4x + 1
Câu 4. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. 2.
Câu 5. !Dãy số nào sau đây có giới !hạn là 0?
n
n
5
5
.
B. − .
A.
3
3
1 − n2
Câu 6. [1] Tính lim 2
bằng?
2n + 1
1
1
A. − .
B. .
2
2
2
Câu 7. Giá trị của lim(2x − 3x + 1) là

x→1
A. +∞.
B. 2.


4n2 + 1 − n + 2
Câu 8. Tính lim
bằng
2n − 3
3
A. +∞.
B. .
2
2
x −9
Câu 9. Tính lim
x→3 x − 3
A. 6.
B. 3.
Câu 10. Dãy số
!n nào có giới hạn bằng 0?
!n
−2
6
A. un =
.
B. un =
.
3
5


2
.
3

D. 1.

C. 1.

D. 2.

C. 1.

D. −1.

C. −1.

D. 4.

!n
4
C.
.
e

!n
1
D.
.
3


C. 0.

D.

C. 1.

D. 0.

C. 2.

D. 1.

C. +∞.

D. −3.

C.

C. un =

n3 − 3n
.
n+1

1
.
3

D. un = n2 − 4n.


Câu 11. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. 9.
B. 6.
C. .
D. .
2
2
1
Câu 12. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = −e + 1.
C. xy0 = ey + 1.
D. xy0 = ey − 1.
q
Câu 13. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 4].

C. m ∈ [0; 2].
D. m ∈ [0; 1].
Trang 1/5 Mã đề 1



Câu 14. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. Vơ số.
C. 63.
D. 64.

Câu 15. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
5
5
A.
;3 .
B. [3; 4).
C. 2; .
D. (1; 2).
2
2
log 2x

x2

1 − 2 log 2x
1 − 2 ln 2x
B. y0 =
.
C. y0 = 3
.
3
x
x ln 10

Câu 16. [1229d] Đạo hàm của hàm số y =
A. y0 =

2x3

1
.
ln 10

Câu 17. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. Vô nghiệm.
C. 1.

D. y0 =

1 − 4 ln 2x
.
2x3 ln 10


D. 3.

Câu 18. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≤ 3.
C. m ≥ 3.
D. m < 3.
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0.
D. m ≤ 0.

Câu 19. [1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m = 4.

B. m < 0 ∨ m > 4.

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



2 11 − 3
9 11 + 19
18 11 − 29
9 11 − 19

A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
9
21
9
un
Câu 21. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. 0.
C. 1.
D. −∞.
Câu 20. [12210d] Xét các số thực dương x, y thỏa mãn log3

Câu 22. Tính lim
A.

2
.
3

2n2 − 1
3n6 + n4
B. 1.


Câu 23. Dãy số nào sau đây có giới hạn khác 0?
sin n
n+1
.
B.
.
A.
n
n

C. 0.

D. 2.

1
C. √ .
n

D.

1
.
n

Câu 24. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.

vn
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
v
n
!
un
D. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
Câu 25. Tính lim
2
A. - .
3

7n2 − 2n3 + 1
3n3 + 2n2 + 1
7
B. .
3

C. 1.

D. 0.
Trang 2/5 Mã đề 1


!

3n + 2
2
Câu 26. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 4.
C. 2.
D. 3.
Câu 27. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
1 − 2n
A. un =
.
B. un =
.
2
(n + 1)
5n + n2

C. un =

n2 − 3n
.
n2

D. un =

n2 − 2

.
5n − 3n2

Câu 28. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
C. lim un = c (Với un = c là hằng số).
12 + 22 + · · · + n2
n3
2
B. .
3

1
B. lim √ = 0.
n
1
D. lim k = 0 với k > 1.
n

Câu 29. [3-1133d] Tính lim
A. 0.

n−1
Câu 30. Tính lim 2
n +2
A. 3.
B. 1.

C.


1
.
3

C. 0.

D. +∞.

D. 2.

Câu 31. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1
.
B. √
.
C. 2
.
A. √
.
D.

a + b2
a2 + b2
a2 + b2
2 a2 + b2
0 0 0 0

0
Câu 32.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
7
3
2
[ = 60◦ , S O
Câu 33. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ O đến (S
√ BC) bằng


2a 57
a 57
a 57

A.
.
B. a 57.
C.
.
D.
.
19
19
17

Câu 34. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
A. .
B. a.
C.
.
D. .
2
2
3
d = 120◦ .
Câu 35. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.

B. 3a.
C. 2a.
D.
.
2
Câu 36. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 6.
B. a 3.
C.
.
D. 2a 6.
2

Câu 37. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 38
3a 58
a 38
3a
A.

.
B.
.
C.
.
D.
.
29
29
29
29
Trang 3/5 Mã đề 1


3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
a
2a
a 2
A. .
B. .
C.
.
D.
.

3
4
3
3
Câu 39. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
A. a 3.
B.
.
C.
.
D. a 2.
3
2
Câu 40. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
.

B.
.
C. a 6.
D.
.
6
3
2
Câu 38. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

Câu 41.
! định nào sau đây là sai?
Z Các khẳng
0

f (x)dx = f (x).
Z
Z
C.
k f (x)dx = k
f (x)dx, k là hằng số.

A.

Z
B.
Z
D.

f (x)dx = F(x) +C ⇒


Z

f (u)dx = F(u) +C.

f (x)dx = F(x) + C ⇒

Z

f (t)dt = F(t) + C.

Câu 42. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. Cả ba đáp án trên.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 43.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
( f (x) − g(x))dx =

A.
Z
C.

( f (x) + g(x))dx =

f (x)dx −
Z


f (x)dx +

g(x)dx.

B.

Z

Z
g(x)dx.

D.

f (x)g(x)dx =
f (x)dx g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.

Câu 44. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
C.
f (x)dx = f (x).

f (x)dx = F(x) + C.


D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Câu 45.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
dx = ln |x| + C, C là hằng số.
B.
0dx = C, C là hằng số.
A.
Z x
Z
xα+1
C.
dx = x + C, C là hằng số.
D.
xα dx =
+ C, C là hằng số.
α+1
Câu 46. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z

Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.

Trang 4/5 Mã đề 1


Z
D. Nếu

f (x)dx =
0

Z

g0 (x)dx thì f (x) = g(x), ∀x ∈ R.

Câu 47. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Chỉ có (I) đúng.


C. Cả hai câu trên sai.

D. Chỉ có (II) đúng.

Câu 48. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.

B. Câu (III) sai.

C. Câu (II) sai.

D. Khơng có câu nào
sai.

Câu 49.
Z [1233d-2] Mệnh đề nào sau đây sai?

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z

Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.

A.

Câu 50. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Chỉ có (I) đúng.

C. Cả hai đều sai.

D. Cả hai đều đúng.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 1


ĐÁP ÁN

BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

3. A

4.

5.

D

6. A

7.

D

8.

9. A

C
D
D

10. A


11.

D

12.

C

13. A

14. A

15. A

16.

C

18.

C

17.

C

19. A

20. A


21.

B

22.

23.

B

24.

25. A
27.

26.
B

29.
31.

B
C

35.
37.

C

32.


C
B

36. A

B

38.
C

B

42.

43.

B

44.
D

45.

C

40. A

41.


46.
48.

47. A
49.

B

30.
34.
D

39.

D

28. A
C

33.

C

C

50. A

1

C

D
B
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×