Tải bản đầy đủ (.pdf) (6 trang)

Đề ôn thpt toán 12 (187)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (115.63 KB, 6 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

2x + 1
x→+∞ x + 1
B. 2.

Câu 1. Tính giới hạn lim
A. 1.

C. −1.

D.

1
.
2

Câu 2. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b



x→a

x→b

C. lim− f (x) = f (a) và lim− f (x) = f (b).

Câu 3. Tính lim
x→5

2
A. .
5
Câu 4. Tính lim
A. 1.

x2 − 12x + 35
25 − 5x
B. +∞.
2n − 3
bằng
+ 3n + 1
B. −∞.

2n2

Câu 5. Dãy số nào có giới hạn bằng 0?!
n
6
A. un = n2 − 4n.

B. un =
.
5
2−n
bằng
n+1
A. 1.
B. 0.

x2 + 3x + 5
Câu 7. Tính giới hạn lim
x→−∞
4x − 1
1
A. − .
B. 1.
4

x→a

x→b

x→a

x→b

D. lim+ f (x) = f (a) và lim− f (x) = f (b).

2
C. − .

5

D. −∞.

C. 0.

D. +∞.

n3 − 3n
C. un =
.
n+1

!n
−2
D. un =
.
3

C. 2.

D. −1.

C. 0.

D.

Câu 6. Giá trị của giới hạn lim

1

.
4

Câu 8. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Câu 9. Giá trị của lim (3x2 − 2x + 1)
A. +∞.

x→1

B. 2.

C. 3.

D. 1.

Câu 10. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. −1 + sin x cos x.
C. 1 − sin 2x.

D. 1 + 2 sin 2x.
q
2
Câu 11. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h

có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 2].
C. m ∈ [−1; 0].
D. m ∈ [0; 1].
Câu 12. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. 6.
C. .
D. 9.
2
2
Trang 1/5 Mã đề 1


1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



9 11 + 19
2 11 − 3
18 11 − 29
9 11 − 19
A. Pmin =

. B. Pmin =
.
C. Pmin =
. D. Pmin =
.
9
3
21
9
Câu 14. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. log2 13.
C. 13.
D. 2020.
log 2x
Câu 15. [1229d] Đạo hàm của hàm số y =

x2
1
1 − 2 log 2x
1 − 4 ln 2x
1 − 2 ln 2x
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
D. y0 = 3
.

3
3
2x ln 10
x
2x ln 10
x ln 10

Câu 16. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
"
!
5
5
C. (1; 2).
D.
;3 .
A. [3; 4).
B. 2; .
2
2
1
Câu 17. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 4.
C. 1.
D. 2.
Câu 13. [12210d] Xét các số thực dương x, y thỏa mãn log3


Câu 18. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m ≤ .
C. m > .
D. m < .
4
4
4
4
x
x
x
Câu 19. [12211d] Số nghiệm của phương trình 12.3 + 3.15 − 5 = 20 là
A. 3.
B. 1.
C. Vơ nghiệm.
D. 2.




Câu 20. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
3
9
B. m ≥ 0.

C. 0 < m ≤ .
D. 0 ≤ m ≤ .
A. 0 ≤ m ≤ .
4
4
4
Câu 21. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
2

2

(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 1.

C. 3.

D. 2.
!
3n + 2
2
Câu 22. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 3.
B. 5.

C. 4.
D. 2.
2
3
7n − 2n + 1
Câu 23. Tính lim 3
3n + 2n2 + 1
2
7
A. 0.
B. - .
C. 1.
D. .
3
3
Câu 24. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
Trang 2/5 Mã đề 1



!
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Câu 25. Dãy số nào sau đây có giới hạn khác 0?
sin n
1
B.
.
A. √ .
n
n
!
1
1
1
+
+ ··· +
Câu 26. Tính lim
1.2 2.3
n(n + 1)

1
.
n

D.

n+1

.
n

B. 1.

C. 2.

D.

3
.
2

n−1
Câu 27. Tính lim 2
n +2
A. 0.
B. 2.

C. 1.

D. 3.

A. 0.

C.

Câu 28. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 + n + 1

A. un =
.
B.
u
=
.
n
5n − 3n2
(n + 1)2
Câu 29. Phát biểu nào sau đây là sai?

C. un =

n2 − 3n
.
n2

D. un =

1 − 2n
.
5n + n2

1
B. lim √ = 0.
n

A. lim un = c (Với un = c là hằng số).
1
= 0 với k > 1.

nk
cos n + sin n
Câu 30. Tính lim
n2 + 1
A. +∞.
B. 0.

D. lim qn = 1 với |q| > 1.

C. lim

C. 1.
0

0

0

D. −∞.

0

0
Câu 31.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3
a 6

A.
.
B.
.
C.
.
D.
.
7
2
2
3
[ = 60◦ , S O
Câu 32. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S BC) bằng


a 57
2a 57
a 57
A.
.
B.
.
C. a 57.
D.
.
19
19

17
Câu 33. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng




a 2
a 2
.
D.
.
B. 2a 2.
C.
A. a 2.
4
2
Câu 34. [2] Cho chóp đều S .ABCD có đáy là hình vuông tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 3.
.
B. 2a 6.
C. a 6.
D.

2
3a
Câu 35. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
2a
a 2
a
A. .
B.
.
C.
.
D. .
3
3
3
4
0 0 0 0
Câu 36. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
A. √

.
B. 2
.
C.
.
D.
.


a + b2
2 a2 + b2
a2 + b2
a2 + b2

Trang 3/5 Mã đề 1


Câu 37. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



2a 3
a 3
a 3
C.
A.
.
B. a 3.
.

D.
.
3
2
2
Câu 38. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
.
B.
.
C. a 3.
D. a 2.
A.
2
3

Câu 39. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



a 38
3a
3a 38

3a 58
.
B.
.
C.
.
D.
.
A.
29
29
29
29
d = 120◦ .
Câu 40. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B.
.
C. 2a.
D. 3a.
2
Câu 41.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
A.
dx = log |u(x)| + C.
u(x)

B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Câu 42. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Chỉ có (I) đúng.

C. Chỉ có (II) đúng.

D. Cả hai câu trên đúng.

Câu 43. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (I) sai.
C. Câu (III) sai.

D. Câu (II) sai.
sai.
Câu 44. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Trang 4/5 Mã đề 1


Câu 45. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. Cả ba câu trên đều sai.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. F(x) = G(x) trên khoảng (a; b).
Câu 46. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
Câu 47. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.

B. 4.


C. 2.

D. 3.

Câu 48. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
B.
f (x)dx = f (x).
Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Câu 49. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu

f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Câu 50.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.

A.
Z
C.

xα dx =

1
dx = ln |x| + C, C là hằng số.
Z x
D.
0dx = C, C là hằng số.
B.

xα+1
+ C, C là hằng số.
α+1

- - - - - - - - - - HẾT- - - - - - - - - -


Trang 5/5 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2.

B

3. A

4.
D

5.
7. A
9.

B

23.

D

18.


C
D
B
D

D
B
D

22.

C

24.

C

26.

B

28.

27. A
29.

D

30.


31.

D

32. A

33.

D

34.

35.

B

20.

B

25.

8.

16.

D

21.


D

14.

15.
19.

6.

12. A

B

17.

C

10. A
C

11.
13.

D

D
B
C
D


36.

B

37. A

38. A

39. A

40.

41. A

42.

D

43. A

44.

D

45. A

46.

47.


D

B

B

48.

49. A

50.

1

D
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×