Tải bản đầy đủ (.pdf) (6 trang)

Đề ôn thpt toán 12 (180)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (112.98 KB, 6 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

x2 − 5x + 6
Câu 1. Tính giới hạn lim
x→2
x−2
A. 1.
B. 5.
x3 − 1
Câu 2. Tính lim
x→1 x − 1
A. +∞.
B. −∞.

C. 0.

D. −1.

C. 0.

D. 3.

Câu 3. Phát biểu nào sau đây là sai?
A. lim qn = 0 (|q| > 1).


C. lim un = c (un = c là hằng số).

1
= 0.
nk
1
D. lim = 0.
n

B. lim

1 − 2n
Câu 4. [1] Tính lim
bằng?
3n + 1
2
1
2
A. .
B. .
C. − .
3
3
3

2
x + 3x + 5
Câu 5. Tính giới hạn lim
x→−∞
4x − 1

1
C. 1.
A. 0.
B. .
4
Câu 6. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. 1 − sin 2x.
C. 1 + 2 sin 2x.
4x + 1
bằng?
Câu 7. [1] Tính lim
x→−∞ x + 1
A. 4.
B. −1.
C. 2.

D. 1.

1
D. − .
4
D. −1 + 2 sin 2x.
D. −4.

Câu 8. Dãy số! nào có giới hạn bằng 0?!
n
n
−2
6

n3 − 3n
A. un =
.
B. un =
.
C. un =
.
D. un = n2 − 4n.
3
5
n+1
2n + 1
Câu 9. Tính giới hạn lim
3n + 2
3
2
1
A. .
B. 0.
C. .
D. .
2
3
2
x+1
Câu 10. Tính lim
bằng
x→−∞ 6x − 2
1
1

1
A. 1.
B. .
C. .
D. .
3
6
2

Câu 11. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
A. (1; 2).
B. 2; .
C.
;3 .
D. [3; 4).
2
2
Câu 12. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≥ .
C. m ≤ .

D. m > .
4
4
4
4
1
Câu 13. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 4.
C. 2.
D. 3.
Trang 1/5 Mã đề 1


Câu 14. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
B. .
C. 9.
D. 6.
A. .
2
2
Câu 15. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m > 3.

C. m ≤ 3.
D. m ≥ 3.
Câu 16. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 1.
C. Vô nghiệm.
D. 3.




− 3m + 4 = 0 có nghiệm
3
3
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
4
4
1 − xy
Câu 18. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



2 11 − 3
9 11 + 19
9 11 − 19
18 11 − 29

A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
9
9
21
Câu 19. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 6).
C. (2; 4; 4).
D. (2; 4; 3).
Câu 17. [12215d] Tìm m để phương trình 4 x+
9
A. 0 ≤ m ≤ .
B. m ≥ 0.
4

1−x2

− 4.2 x+

1−x2

Câu 20. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?

A. 2.
B. Vô số.
C. 3.
D. 1.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 21. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = .
2
C. lim un = 0.
D. lim un = 1.
Câu 22. Dãy số nào sau đây có giới hạn khác 0?
n+1
sin n
A.
.
B.
.
n
n
Câu 23. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
1 − 2n
A. un =
.
B. un =
.

2
5n − 3n
5n + n2
5
Câu 24. Tính lim
n+3
A. 0.
B. 1.
n−1
Câu 25. Tính lim 2
n +2
A. 2.
B. 1.
!
1
1
1
Câu 26. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
A. 2.

B. 1.

C.

1
.

n

C. un =

1
D. √ .
n
n2 − 3n
.
n2

D. un =

C. 2.

D. 3.

C. 3.

D. 0.

C. 0.

D.

3
.
2

D.


5
.
2

1
1
1
Câu 27. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
A. .
B. +∞.
C. 2.
2

n2 + n + 1
.
(n + 1)2

!

Trang 2/5 Mã đề 1


Câu 28. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.

(III) lim qn = +∞ nếu |q| > 1.
A. 0.
Câu 29. Tính lim

B. 3.
7n2 − 2n3 + 1
3n3 + 2n2 + 1
B. 0.

C. 1.

D. 2.

2
D. - .
3
!
3n + 2
Câu 30. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a2 − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 2.
C. 5.
D. 3.
[ = 60◦ , S O
Câu 31. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ A đến (S

√ BC) bằng
√ với mặt đáy và S O = a.

a 57
a 57
2a 57
.
B.
.
C.
.
D. a 57.
A.
19
19
17
Câu 32. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
.
B. a 6.
.
D.
.

C.
6
2
3
Câu 33. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
ab
1
A. 2
.
B. √
.
C. √
.
D. √
.
2
2
2
2
2
a +b
a +b
a +b
2 a2 + b2
A. 1.

C.


7
.
3

Câu 34. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. 2a 6.
B. a 6.
C. a 3.
D.
.
2
Câu 35. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
8a
a
2a
A.
.
B.
.
C.

.
D. .
9
9
9
9
0 0 0 0
Câu 36. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
ab
1
.
B. √
.
C. √
.
D. √
.
A. 2
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
d = 30◦ , biết S BC là tam giác đều
Câu 37. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √

góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
9
13
26
16
3a
Câu 38. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
Trang 3/5 Mã đề 1



a
a

2a
a 2
A. .
B. .
C.
.
D.
.
3
4
3
3
0 0 0 0
0
Câu 39.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2

7
2
3
Câu 40. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
B. a.
C. .
D.
.
A. .
2
3
2
Câu 41. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.


B. Cả hai câu trên đúng. C. Chỉ có (II) đúng.

Câu 42. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) có giá trị lớn nhất trên K.

D. Chỉ có (I) đúng.

B. f (x) xác định trên K.
D. f (x) liên tục trên K.

Câu 43. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).

B. (II) và (III).

C. (I) và (II).

D. Cả ba mệnh đề.

Câu 44. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.

Z
Z
0
f (x)dx =
g0 (x)dx.
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
Z
Z
0
C. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Câu 45. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
C.
dx = log |u(x)| + C.
u(x)
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Câu 46. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
Trang 4/5 Mã đề 1



(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 3.

C. 1.

D. 4.

Câu 47. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
D.
f (x)dx = f (x).
Câu 48.
! định nào sau đây là sai?
Z Các khẳng
0

A.

Z
C.

f (x)dx = f (x).
Z
k f (x)dx = k
f (x)dx, k là hằng số.

Z
B.
Z
D.

Câu 49.
Z Trong các khẳng định sau, khẳng định nào sai? Z
0dx = C, C là hằng số.

A.
Z
C.

B.

1
dx = ln |x| + C, C là hằng số.
x

Z
D.


f (x)dx = F(x) +C ⇒

Z

f (u)dx = F(u) +C.

f (x)dx = F(x) + C ⇒

Z

f (t)dt = F(t) + C.

xα dx =

xα+1
+ C, C là hằng số.
α+1

dx = x + C, C là hằng số.

Câu 50. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Cả ba đáp án trên.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2.

D

3. A

D

4.
D

5.

C
D

6.

7. A

8. A

9.


C

10.

C

11.

C

12.

C

13. A

14. A

15.

D

16. A

C

17.

18. A


19.

B

20. A

21.

B

22. A

23.

B

24. A

25.

D

26.
28.

C

27.
29.


B

D

D

30. A

31. A

32. A

33.

C

34.

35.

C

36.

C

38.

C


37.

B

39.
41.

D

40.

B

B

42.

B

D

43.

C

44. A

45.

C


46.

B

48.

B

50.

B

47. A
49.

B

1



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×