Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 5 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Tính lim
x→2
A. 2.
x+2
bằng?
x
B. 3.
C. 0.
D. 1.
C. +∞.
D. 0.
C. +∞.
D. 2.
C. 0.
D.
C. −1.
D. 2.
C. 0.
1
D. − .
4
C. 9.
D. 0.
Câu 2. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 2.
B. 1.
Câu 3. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 3.
B. 1.
1 − n2
Câu 4. [1] Tính lim 2
bằng?
2n + 1
1
1
A. .
B. − .
3
2
4x + 1
Câu 5. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.
B. −4.
√
x2 + 3x + 5
Câu 6. Tính giới hạn lim
x→−∞
4x − 1
1
A. .
B. 1.
4
1
.
2
Câu 7. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 7.
B. 5.
Câu 8. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
2−n
bằng
n+1
B. 1.
Câu 9. Giá trị của giới hạn lim
A. 0.
C. −1.
D. 2.
Câu 10. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim+ f (x) = lim− f (x) = a.
C. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
x→a
x→a
D. lim f (x) = f (a).
x→a
Câu 11. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.
B. 4.
C. 3.
log 2x
là
x2
1 − 4 ln 2x
1
0
B. y0 =
.
C.
y
=
.
2x3 ln 10
2x3 ln 10
1
3|x−1|
= 3m − 2 có nghiệm duy
D. 2.
Câu 12. [1229d] Đạo hàm của hàm số y =
A. y0 =
1 − 2 log 2x
.
x3
D. y0 =
1 − 2 ln 2x
.
x3 ln 10
Câu 13. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. log2 2020.
C. log2 13.
D. 2020.
Trang 1/5 Mã đề 1
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0.
D. m < 0 ∨ m > 4.
Câu 14. [1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m = 4.
B. m ≤ 0.
√
√
Câu 15. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
3
9
B. m ≥ 0.
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
A. 0 ≤ m ≤ .
4
4
4
1
Câu 16. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e + 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
q
2
Câu 17. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 2].
C. m ∈ [−1; 0].
D. m ∈ [0; 1].
2
Câu 18. [12214d] Với giá trị nào của m thì phương trình
B. 2 < m ≤ 3.
2
1
3|x−2|
= m − 2 có nghiệm
C. 0 < m ≤ 1.
D. 2 ≤ m ≤ 3.
√
Câu 19. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. Vô số.
C. 62.
D. 63.
A. 0 ≤ m ≤ 1.
Câu 20. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 1.
C. 2.
D. Vô nghiệm.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 1.
1
D. lim un = 0.
C. lim un = .
2
Câu 21. [3-1132d] Cho dãy số (un ) với un =
Câu 22. Tính lim
2
A. - .
3
Câu 23. Tính lim
A. −∞.
7n2 − 2n3 + 1
3n3 + 2n2 + 1
7
.
3
B. 1.
C. 0.
D.
cos n + sin n
n2 + 1
B. 0.
C. 1.
D. +∞.
C. +∞.
D.
12 + 22 + · · · + n2
n3
2
B. .
3
Câu 24. [3-1133d] Tính lim
A. 0.
Câu 25. Tính lim
A. 1.
n−1
n2 + 2
B. 3.
1
.
3
D. 2.
!
3n + 2
2
Câu 26. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 3.
C. 5.
D. 2.
Câu 27. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 + n + 1
A. un =
.
B.
u
=
.
n
n2
(n + 1)2
C. 0.
C. un =
n2 − 2
.
5n − 3n2
D. un =
1 − 2n
.
5n + n2
Trang 2/5 Mã đề 1
Câu 28. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
1
C. lim √ = 0.
n
Câu 29. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
A. .
B.
.
n
n
1
= 0 với k > 1.
nk
D. lim qn = 1 với |q| > 1.
B. lim
1
C. √ .
n
D.
n+1
.
n
Câu 30. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.
B. 3.
C. 0.
D. 1.
Câu 31. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a
a
a 3
.
B. .
C. .
D. a.
A.
2
2
3
3a
Câu 32. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a 2
a
2a
a
B.
.
C. .
D.
.
A. .
3
3
4
3
√
Câu 33. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a 38
a 38
3a 58
3a
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 34. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
1
ab
.
B. √
.
C. √
.
D. 2
.
A. √
a + b2
a2 + b2
a2 + b2
2 a2 + b2
0 0 0 0
0
Câu 35.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
2
7
3
Câu 36. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
ab
1
A. √
.
B. √
.
C. 2
.
D. √
.
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 37. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. a 6.
B. 2a 6.
C. a 3.
D.
.
2
Trang 3/5 Mã đề 1
Câu 38. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√
√
√
√ thẳng BD bằng
a b2 + c2
abc b2 + c2
c a2 + b2
b a2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 39. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
A.
.
B. a 6.
C.
.
D.
.
6
2
3
Câu 40. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng
√
√
√
a 3
2a 3
a 3
.
B.
.
C.
.
D. a 3.
A.
3
2
2
Câu 41. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
√
B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D. Cả ba đáp án trên.
Câu 42. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
B. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Câu 43.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
A.
dx = log |u(x)| + C.
u(x)
B. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Câu 44.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
dx = ln |x| + C, C là hằng số.
B.
dx = x + C, C là hằng số.
A.
Z x
Z
xα+1
C.
0dx = C, C là hằng số.
D.
xα dx =
+ C, C là hằng số.
α+1
Câu 45.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Trang 4/5 Mã đề 1
Câu 46.
f (x), g(x) liên
đề nào sai? Z
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
D.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Câu 47. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 48. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).
B. (I) và (III).
Câu 49. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) có giá trị lớn nhất trên K.
C. (II) và (III).
D. Cả ba mệnh đề.
B. f (x) liên tục trên K.
D. f (x) có giá trị nhỏ nhất trên K.
Câu 50. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.
B. Câu (III) sai.
C. Câu (II) sai.
D. Khơng có câu nào
sai.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
2.
1. A
3.
D
4.
D
B
D
6.
5. A
7.
C
8.
9.
C
10.
D
12.
D
11. A
B
13.
C
14. A
15.
C
16.
17.
C
18.
B
19.
C
20.
B
21.
C
22. A
23.
C
26. A
27.
D
28.
29.
D
30. A
31.
D
32.
33.
D
34. A
35.
D
36. A
37. A
38.
39. A
40. A
41.
D
24.
B
25.
D
42.
B
43. A
44.
45. A
46. A
47.
B
48. A
49.
B
50.
1
D
D
B
C
D
D