Tải bản đầy đủ (.pdf) (6 trang)

Đề ôn thpt toán 12 (132)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (114.14 KB, 6 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 2.

B. 1.

Câu 2. Tính lim
x→3

A. 6.

x2 − 9
x−3

B. 3.
2x + 1
Câu 3. Tính giới hạn lim
x→+∞ x + 1
A. 2.

B. −1.



C. 3.

D. +∞.

C. −3.

D. +∞.

C. 1.

D.



4n2 + 1 − n + 2
bằng
Câu 4. Tính lim
2n − 3
A. +∞.
Câu 5. [1] Tính lim
2
A. − .
3

B. 1.

C.

3

.
2

D. 2.

C.

1
.
3

D.

1 − 2n
bằng?
3n + 1
B. 1.

1
.
2

Câu 6. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. −1 + 2 sin 2x.
C. 1 − sin 2x.
x+1
bằng
Câu 7. Tính lim
x→+∞ 4x + 3

1
1
A. .
B. .
C. 1.
4
3

2
.
3

D. 1 + 2 sin 2x.

D. 3.

Câu 8. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
x2 − 12x + 35
Câu 9. Tính lim
x→5
25 − 5x
2
2
A. .
B. − .
5

5

D. +∞.

C. −∞.

Câu 10. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

A. lim [ f (x) + g(x)] = a + b.
x→+∞

C. lim [ f (x) − g(x)] = a − b.
x→+∞

x→+∞

B. lim [ f (x)g(x)] = ab.
x→+∞

D. lim

x→+∞

f (x) a
= .
g(x) b


Câu 11. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao

nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. Vơ số.
C. 62.
D. 63.
Câu 12. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 2020.
C. 13.
D. log2 2020.
Trang 1/5 Mã đề 1


Câu 13. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.

B. 3.

C. 4.

= 3m − 2 có nghiệm duy

D. 2.
1

= m − 2 có nghiệm
3|x−2|
C. 0 < m ≤ 1.
D. 2 < m ≤ 3.


Câu 14. [12214d] Với giá trị nào của m thì phương trình
A. 2 ≤ m ≤ 3.

1
3|x−1|

B. 0 ≤ m ≤ 1.

Câu 15. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. 2.

D. Vô nghiệm.

log 2x

x2
1
1 − 2 log 2x
1 − 2 ln 2x
1 − 4 ln 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
D. y0 =

.
3
2x ln 10
x
x ln 10
2x3 ln 10
log(mx)
Câu 17. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m = 4.
C. m < 0.
D. m < 0 ∨ m > 4.

Câu 16. [1229d] Đạo hàm của hàm số y =

Câu 18. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m > .
C. m ≥ .
D. m < .
4
4
4
4





− 3m + 4 = 0 có nghiệm
9
3
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
4
4
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
Câu 20. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
Pmin của P = x√+ y.



2 11 − 3
9 11 + 19
18 11 − 29
9 11 − 19
A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3

9
21
9
Câu 19. [12215d] Tìm m để phương trình 4 x+
3
B. m ≥ 0.
A. 0 ≤ m ≤ .
4

1−x2

− 4.2 x+

1−x2

Câu 21. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
!vn
un
= +∞.
D. Nếu lim un = a > 0 và lim vn = 0 thì lim

vn
Câu 22. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.
Câu 23. Tính lim
2
A. - .
3

B. 3.
7n2 − 2n3 + 1
3n3 + 2n2 + 1
7
B. .
3

C. 1.

C. 0.

D. 0.

D. 1.
Trang 2/5 Mã đề 1


!
3n + 2

2
Câu 24. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 3.
B. 2.
C. 5.
D. 4.
Câu 25. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
C. lim un = c (Với un = c là hằng số).
Câu 26. Tính lim
A. 1.

cos n + sin n
n2 + 1
B. 0.

1
B. lim √ = 0.
n
1
D. lim k = 0 với k > 1.
n

D.
un
Câu 27. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn

A. 0.
B. +∞.
C. −∞.
D.
!
1
1
1
+
+ ··· +
Câu 28. Tính lim
1.2 2.3
n(n + 1)
3
A. 2.
B. 1.
C. .
D.
2
Câu 29. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 − 3n
n2 − 2
A. un =
.
B.
u
=
.
C.

u
=
.
D.
n
n
5n − 3n2
5n + n2
n2
2n2 − 1
Câu 30. Tính lim 6
3n + n4
2
B. 0.
A. .
3

C. −∞.

C. 2.

+∞.
1.

0.

un =

n2 + n + 1
.

(n + 1)2

D. 1.

d = 120◦ .
Câu 31. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B.
.
C. 3a.
D. 2a.
2
d = 30◦ , biết S BC là tam giác đều
Câu 32. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.

D.
.
16
9
13
26
0 0 0 0
0
Câu 33.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
2
3
7
Câu 34. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD

√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng



a 2
a 2
A.
.
B. 2a 2.
C.
.
D. a 2.
2
4
Câu 35. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
A. a 3.
B.
.
C.
.
D. a 2.
3
2

Câu 36. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
Trang 3/5 Mã đề 1




a 6
B. a 3.
C.
.
D. 2a 6.
2
0 0 0 0
Câu 37. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
.
C. √
.
D. √
.
A. 2
.
B. √
2
a +b

a2 + b2
2 a2 + b2
a2 + b2

A. a 6.



[ = 60◦ , S O
Câu 38. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.√Khoảng cách từ O đến (S
√ BC) bằng


a 57
a 57
2a 57
.
C.
.
D.
.
A. a 57.
B.
19
17
19

Câu 39. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng

(S BD) bằng



3a 38
3a
a 38
3a 58
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 40. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
ab
1
.
B. √
.
C. √

.
D. 2
.
A. √
a + b2
2 a2 + b2
a2 + b2
a2 + b2
Câu 41. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. Cả ba đáp án trên.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 42.
Z Các khẳng định nào sau
Z đây là sai?
f (x)dx = F(x) + C ⇒

A.
Z
C.

f (x)dx = F(x) +C ⇒

f (t)dt = F(t) + C. B.

Z

f (u)dx = F(u) +C. D.


Z
Z

!0
f (x)dx = f (x).
Z
k f (x)dx = k
f (x)dx, k là hằng số.

Câu 43. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.

B. 4.

C. 1.

D. 2.

Câu 44. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.


B. Khơng có câu nào C. Câu (III) sai.
sai.

D. Câu (II) sai.
Trang 4/5 Mã đề 1


Câu 45.
Z Trong các khẳng định sau, khẳng định nào sai? Z
0dx = C, C là hằng số.

A.
Z
C.

B.

1
dx = ln |x| + C, C là hằng số.
x

Z
D.

dx = x + C, C là hằng số.
xα dx =

xα+1
+ C, C là hằng số.
α+1


Câu 46.
Z [1233d-2] Mệnh đề nào sau đây sai?

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
B.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.

A.

Câu 47. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =

g0 (x)dx.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
D. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.

Câu 48. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.


B. Cả hai câu trên đúng. C. Chỉ có (I) đúng.

Câu 49. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) xác định trên K.

D. Cả hai câu trên sai.

B. f (x) liên tục trên K.
D. f (x) có giá trị lớn nhất trên K.

Câu 50. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Chỉ có (I) đúng.

C. Cả hai đều đúng.

D. Cả hai đều sai.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1

1. A

2. A

3. A

4.

B

5. A

6.

B

7. A

8.

B

9. A

10.

11.

12. A


C

13. A

14.

15. A

16.

17.

D
D
C

18. A

B

19. A

20. A

21.

D

22. A
D


23. A

24.

25. A

26.

B

27. A

28.

B
B

29.

B

30.

31.

B

32.


33.

C

34. A

35.

C

36. A

37.

D

39.

40.

B

42.

C

43. A
45.

D


38.

B

41.

C

D

44.

B

46.

B
B

47.

B

48.

49.

B


50. A

1

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×