Tải bản đầy đủ (.pdf) (6 trang)

Đề ôn thpt toán 12 (130)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (111.81 KB, 6 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. 1 − sin 2x.
C. −1 + sin x cos x.

D. 1 + 2 sin 2x.

Câu 2. Giá trị của lim(2x2 − 3x + 1) là
x→1

B. 0.
2n + 1
Câu 3. Tìm giới hạn lim
n+1
A. 0.
B. 2.

C. 2.

D. +∞.

C. 3.



D. 1.

Câu 4. !Dãy số nào sau đây có giới !hạn là 0?
n
n
1
5
A.
.
B. − .
3
3

!n
4
C.
.
e

!n
5
D.
.
3

C. 0.

D. 1.


2
C. − .
5

D.

C. 6.

D. 3.

A. 1.

Câu 5. Tính giới hạn lim
x→2

A. 5.
Câu 6. Tính lim
x→5

x2 − 5x + 6
x−2
B. −1.

x2 − 12x + 35
25 − 5x
B. +∞.

A. −∞.
Câu 7. Tính lim
x→3


x2 − 9
x−3

B. +∞.

x2 + 3x + 5
Câu 8. Tính giới hạn lim
x→−∞
4x − 1
A. 1.
B. 0.
A. −3.

Câu 9. Tính lim
A. +∞.

x→1

x3 − 1
x−1

B. 3.

2
.
5

1
.

4

1
D. − .
4

C. 0.

D. −∞.

C.

Câu 10. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

x→a

x→a

C. lim+ f (x) = lim− f (x) = a.

D. lim f (x) = f (a).
x→a

Câu 11. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.

B. 2.
C. 1.
D. 3.
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



2 11 − 3
9 11 − 19
9 11 + 19
18 11 − 29
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
A. Pmin =
3
9
9
21
1
Câu 13. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 1.

C. 3.
D. 4.

Câu 12. [12210d] Xét các số thực dương x, y thỏa mãn log3

Trang 1/5 Mã đề 1



Câu 14. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 63.
C. 64.
D. 62.
log 2x

Câu 15. [1229d] Đạo hàm của hàm số y =
x2
1
1 − 2 ln 2x
1 − 2 log 2x
1 − 4 ln 2x
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
D. y0 =

.
3
2x ln 10
x ln 10
x
2x3 ln 10
Câu 16. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (2; 4; 6).
C. (2; 4; 3).
D. (1; 3; 2).
Câu 17. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 2020.
C. 13.
D. log2 2020.
Câu 18. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≤ 3.
C. m > 3.
D. m ≥ 3.
Câu 19. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
B. 9.
C. .
D. 6.

A. .
2
2

Câu 20. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
!
"
!
" đây?
5
5
D.
;3 .
A. (1; 2).
B. [3; 4).
C. 2; .
2
2
!
1
1
1
+
+ ··· +
Câu 21. Tính lim
1.2 2.3
n(n + 1)
3
A. .

B. 1.
C. 0.
D. 2.
2
2n2 − 1
Câu 22. Tính lim 6
3n + n4
2
C. 0.
D. 2.
A. 1.
B. .
3
12 + 22 + · · · + n2
Câu 23. [3-1133d] Tính lim
n3
2
1
A. .
B. 0.
C. +∞.
D. .
3
3
Câu 24. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.
5

Câu 25. Tính lim
n+3
A. 0.

B. 0.

B. 2.

C. 2.

D. 1.

C. 3.

D. 1.
!
3n + 2
2
Câu 26. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 2.
C. 4.
D. 3.
Trang 2/5 Mã đề 1


Câu 27. Phát biểu nào sau đây là sai?

A. lim un = c (Với un = c là hằng số).
1
C. lim √ = 0.
n
Câu 28. Dãy số nào sau đây có giới hạn khác 0?
sin n
n+1
A.
.
B.
.
n
n

1
= 0 với k > 1.
nk
D. lim qn = 1 với |q| > 1.
B. lim

1
C. √ .
n

D.

1
.
n


cos n + sin n
n2 + 1
B. 0.
C. +∞.
D. 1.
2
3
7n − 2n + 1
Câu 30. Tính lim 3
3n + 2n2 + 1
7
2
A. 0.
B. .
C. 1.
D. - .
3
3
Câu 31. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
.
D. 2a 6.
A. a 3.
B. a 6.
C.

2
0 0 0 0
Câu 32. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
2 a2 + b2
a2 + b2
a2 + b2

Câu 29. Tính lim
A. −∞.

Câu 33. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2

a 2
A.
.
B.
.
C. a 3.
D. a 2.
2
3

Câu 34. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 58
3a
a 38
3a 38
A.
.
B.
.
C.
.
D.
.
29
29

29
29
Câu 35. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1
.
C. √
A. √
.
B. 2
.
D. √
.
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 36. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
đến đường√thẳng BD0 bằng



abc b2 + c2
a b2 + c2
c a2 + b2
b a2 + c2

A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 37. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
A. a 2.
B.
.
C.
.
D. 2a 2.
4
2
d = 30◦ , biết S BC là tam giác đều
Câu 38. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC

cạnh a và mặt bên (S BC) vng góc với mặt đáy. Khoảng cách từ C đến (S AB) bằng
Trang 3/5 Mã đề 1






a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
26
9
13
16
0 0 0 0
0
Câu 39.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6

a 6
a 3
a 6
A.
.
B.
.
C.
.
D.
.
3
7
2
2
Câu 40. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
.
B.
.
C. a 6.
D.
.
A.

3
2
6
Câu 41.
Z Trong cácα+1khẳng định sau, khẳng định nào sai? Z
x
A.
xα dx =
+ C, C là hằng số.
B.
0dx = C, C là hằng số.
α+1
Z
Z
1
C.
dx = x + C, C là hằng số.
D.
dx = ln |x| + C, C là hằng số.
x
Câu 42. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. Cả ba câu trên đều sai.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
Câu 43.
Z [1233d-2] Mệnh đề nào sau đây sai?

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.

Z
Z
B.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.

A.

Câu 44.
Z Các khẳng định
Z nào sau đây là sai?
A.
Z
C.

k f (x)dx = k
f (x)dx, k là hằng số.
!0

f (x)dx = f (x).

Z
B.
Z
D.

f (x)dx = F(x) + C ⇒

Z

f (t)dt = F(t) + C.

f (x)dx = F(x) +C ⇒

Z

f (u)dx = F(u) +C.

Câu 45. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D. Cả ba đáp án trên.
Câu 46. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].

A. 4.

B. 1.

C. 3.

D. 2.
Trang 4/5 Mã đề 1


Câu 47. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Chỉ có (II) đúng.

C. Cả hai câu trên đúng. D. Chỉ có (I) đúng.

Câu 48. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).

(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. (II) và (III).

C. Cả ba mệnh đề.

D. (I) và (III).

Câu 49. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 50. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều sai.
B. Chỉ có (I) đúng.

C. Chỉ có (II) đúng.

D. Cả hai đều đúng.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

B

3.

B

4. A

5.

B

6.

D

8.

D
D


7.

C

9.

B

10.

11.

B

12. A

13.

B

14.

15.

B

16.

17. A
19.

21.

C
B
D

23.
25. A
27.

D

D

20.

D

22.

C

24.

C

26.

C


28.

B

30.

31.

B

32.

33. A

34. A

35. A

36.
C

B

18.

29.

37.

D


38.

B
D
C
B
C

39. A

40.

D

41. A

42.

D
D

43.

B

44.

45.


B

46.

47.
49.

C

C

48. A
D

50.

1

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×