Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 5 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
2n + 1
Câu 1. Tìm giới hạn lim
n+1
A. 3.
B. 0.
2
x − 12x + 35
Câu 2. Tính lim
x→5
25 − 5x
2
A. .
B. +∞.
5
√
√
4n2 + 1 − n + 2
bằng
Câu 3. Tính lim
2n − 3
A. 1.
B. +∞.
Câu 4. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 2.
B. 0.
x−3
bằng?
Câu 5. [1] Tính lim
x→3 x + 3
A. 1.
B. +∞.
C. 2.
D. 1.
C. −∞.
2
D. − .
5
C. 2.
D.
C. +∞.
D. 1.
C. −∞.
D. 0.
Câu 6. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 3.
B. 2.
C. 1.
x+1
bằng
Câu 7. Tính lim
x→−∞ 6x − 2
1
1
B. 1.
C. .
A. .
6
3
2
2
0
Câu 8. Cho f (x) = sin x − cos x − x. Khi đó f (x) bằng
A. 1 + 2 sin 2x.
B. −1 + 2 sin 2x.
C. 1 − sin 2x.
3
.
2
D. +∞.
D.
1
.
2
D. −1 + sin x cos x.
Câu 9. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
2−n
Câu 10. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 2.
C. 1.
D. 0.
Câu 11. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. Vô số.
C. 1.
D. 2.
Câu 12. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vơ nghiệm.
C. 3.
D. 2.
Câu 13. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 4).
C. (1; 3; 2).
D. (2; 4; 6).
log 2x
Câu 14. [1229d] Đạo hàm của hàm số y =
là
x2
1
1 − 2 ln 2x
1 − 4 ln 2x
1 − 2 log 2x
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
D. y0 =
.
3
2x ln 10
x ln 10
2x ln 10
x3
Trang 1/5 Mã đề 1
Câu 15.
[12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3
có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [0; 4].
B. m ∈ [0; 2].
C. m ∈ [0; 1].
q
x+ log23 x + 1+4m−1 = 0
D. m ∈ [−1; 0].
√
Câu 16. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
C.
;3 .
D. (1; 2).
A. [3; 4).
B. 2; .
2
2
log(mx)
Câu 17. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m ≤ 0.
C. m < 0 ∨ m > 4.
D. m < 0.
√
Câu 18. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. Vô số.
C. 62.
D. 64.
Câu 19. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. Vô nghiệm.
C. 2.
D. 1.
1
Câu 20. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 < m ≤ 3.
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.
Câu 21. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.
B. 2.
C. 0.
!
1
1
1
Câu 22. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. +∞.
B. .
C. .
2
2
Câu 23. Dãy số nào sau đây có giới hạn khác 0?
n+1
sin n
1
A. .
B.
.
C.
.
n
n
n
Câu 24. Tính lim
D. 2.
1
D. √ .
n
2n2 − 1
3n6 + n4
2
.
3
Câu 25. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n
A. 1.
D. 1.
B.
C. lim un = c (Với un = c là hằng số).
12 + 22 + · · · + n2
Câu 26. [3-1133d] Tính lim
n3
2
1
A. .
B. .
3
3
n−1
Câu 27. Tính lim 2
n +2
A. 0.
B. 3.
C. 0.
D. 2.
B. lim qn = 1 với |q| > 1.
D. lim
1
= 0 với k > 1.
nk
C. 0.
D. +∞.
C. 1.
D. 2.
Trang 2/5 Mã đề 1
!
3n + 2
2
Câu 28. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 2.
B. 5.
C. 3.
D. 4.
5
Câu 29. Tính lim
n+3
A. 1.
B. 3.
C. 2.
D. 0.
Câu 30. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 + n + 1
A. un =
.
B.
u
=
.
n
5n + n2
(n + 1)2
C. un =
n2 − 3n
.
n2
D. un =
n2 − 2
.
5n − 3n2
Câu 31. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√
√
√
√ thẳng BD bằng
a b2 + c2
c a2 + b2
abc b2 + c2
b a2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
0 0 0 0
0
Câu 32.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
3
7
2
Câu 33. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a 3
a
a
B.
.
C. .
D. a.
A. .
3
2
2
√
Câu 34. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
a 38
3a 58
3a 38
3a
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 35. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
A.
.
B.
.
C.
.
D. a 6.
3
6
2
[ = 60◦ , S O
Câu 36. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S√BC) bằng
√
√
a 57
2a 57
a 57
A.
.
B. a 57.
C.
.
D.
.
19
19
17
d = 120◦ .
Câu 37. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 3a.
B. 2a.
C.
.
D. 4a.
2
Câu 38. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
A. 2
.
B.
.
C.
.
D.
.
√
√
√
a + b2
a2 + b2
2 a2 + b2
a2 + b2
Câu 39. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng
√
√
√
√
a 2
a 2
A. a 2.
B.
.
C. a 3.
D.
.
2
3
Trang 3/5 Mã đề 1
Câu 40. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng
√
√
a 2
a 2
D. a 2.
.
B.
.
C. 2a 2.
A.
2
4
Câu 41. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
B. f (x) xác định trên K.
C. f (x) có giá trị nhỏ nhất trên K.
D. f (x) liên tục trên K.
Câu 42. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.
B. (II) và (III).
C. (I) và (III).
D. (I) và (II).
Câu 43. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 44. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.
B. Cả hai câu trên đúng. C. Chỉ có (I) đúng.
D. Cả hai câu trên sai.
Câu 45.
Z Trong cácα+1khẳng định sau, khẳng định nào sai? Z
x
1
+ C, C là hằng số.
B.
dx = ln |x| + C, C là hằng số.
A.
xα dx =
α+1
Z
Z x
0dx = C, C là hằng số.
C.
Câu 46.
Z Các khẳng định nào sau
Z đây là sai?
f (x)dx = F(x) +C ⇒
A.
Z
C.
f (x)dx = F(x) + C ⇒
f (u)dx = F(u) +C. B.
Z
dx = x + C, C là hằng số.
D.
f (t)dt = F(t) + C. D.
Z
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.
!0
f (x)dx = f (x).
Câu 47. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
Trang 4/5 Mã đề 1
A. Câu (II) sai.
B. Khơng có câu nào C. Câu (I) sai.
sai.
Câu 48. Xét hai khẳng đinh sau
D. Câu (III) sai.
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều sai.
C. Cả hai đều đúng.
D. Chỉ có (I) đúng.
Câu 49. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
√
B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Cả ba đáp án trên.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
Câu 50.
f (x), g(x) liên
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Z
Z
Z
Z
Z
Z
C.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
D.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
2. A
C
3. A
D
5.
7. A
9.
4.
B
6.
B
8.
B
10. A
B
11.
D
12.
13.
D
14.
15.
D
16.
C
18.
C
17. A
19.
D
20.
21.
B
22.
23.
B
24.
25.
B
26.
29.
D
32.
D
B
C
37.
39.
D
C
B
D
B
34.
C
36.
C
38.
B
40. A
B
41.
43.
B
30. A
B
33.
35.
B
28.
27. A
31.
D
42.
D
B
44.
45. A
46. A
47.
B
48. A
49.
B
50. A
1
D
B