Tải bản đầy đủ (.pdf) (6 trang)

Đề ôn thpt toán 12 (23)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (114.4 KB, 6 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 5 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

2n + 1
3n + 2
3
2
1
C. .
D. .
A. 0.
B. .
2
2
3
Câu 2. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim+ f (x) = f (b).
D. lim+ f (x) = f (a) và lim− f (x) = f (b).


Câu 1. Tính giới hạn lim

x→a

x→b

x→a

x→b

Câu 3. Dãy
!n số nào sau đây có giới
!n hạn là 0?
5
5
A. − .
B.
.
3
3

!n
1
C.
.
3

!n
4
D.

.
e

Câu 4. Dãy số nào có giới hạn bằng 0?!
n
6
2
B. un =
A. un = n − 4n.
.
5

!n
−2
C. un =
.
3

D. un =

Câu 5. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 0.
B. 9.

C. 5.

D. 7.

n3 − 3n

.
n+1

Câu 6. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x)g(x)] = ab.
B. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞
f (x) a
C. lim [ f (x) + g(x)] = a + b.
D. lim
= .
x→+∞
x→+∞ g(x)
b
Câu 7. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 1.
B. 0.
C. 2.

2
x + 3x + 5
Câu 8. Tính giới hạn lim
x→−∞
4x − 1
1
A. .

B. 0.
C. 1.
4
x+1
Câu 9. Tính lim
bằng
x→−∞ 6x − 2
1
1
A. .
B. .
C. 1.
2
3
Câu 10. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.

D. +∞.

1
D. − .
4

D.

1
.

6

Câu 11. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 2.
C. Vơ số.
D. 1.
q
Câu 12. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [0; 4].
D. m ∈ [−1; 0].
Trang 1/5 Mã đề 1


Câu 13. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. Vơ nghiệm.
C. 1.
D. 3.

Câu 14. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 63.

C. Vơ số.
D. 64.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 15. [1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m > 4.
C. m < 0.
D. m < 0 ∨ m = 4.

Câu 16. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
;3 .
B. 2; .
C. [3; 4).
D. (1; 2).
A.
2
2
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y



18 11 − 29

9 11 − 19
2 11 − 3
=
. C. Pmin =
. D. Pmin =
.
21
9
3

Câu 17. [12210d] Xét các số thực dương x, y thỏa mãn log3
Pmin của P = x√+ y.
9 11 + 19
A. Pmin =
.
9

B. Pmin

Câu 18. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m ≤ .
C. m < .
D. m > .
4
4

4
4
Câu 19. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 3.
C. 2.
D. Vô nghiệm.
Câu 20. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
B. .
C. 6.
D. 9.
A. .
2
2
!
3n + 2
2
Câu 21. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 3.
C. 4.
D. 2.
2
2n − 1

Câu 22. Tính lim 6
3n + n4
2
A. 2.
B. 1.
C. .
D. 0.
3
Câu 23. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
1 − 2n
n2 + n + 1
n2 − 2
A. un =
.
B.
u
=
.
C.
u
=
.
D.
u
=
.
n
n
n

n2
5n + n2
(n + 1)2
5n − 3n2
n−1
Câu 24. Tính lim 2
n +2
A. 2.
B. 1.
C. 3.
D. 0.
un
Câu 25. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. 0.
C. −∞.
D. 1.
1 + 2 + ··· + n
Câu 26. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 1.
B. lim un = 0.
1
C. lim un = .
D. Dãy số un khơng có giới hạn khi n → +∞.
2
Trang 2/5 Mã đề 1



cos n + sin n
n2 + 1
B. −∞.
C. 1.
D.
!
1
1
1
Câu 28. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
A. +∞.
B. .
C. 2.
D.
2
7n2 − 2n3 + 1
Câu 29. Tính lim 3
3n + 2n2 + 1
7
A. 1.
B. .
C. 0.
D.
3
Câu 30. Phát biểu nào sau đây là sai?

1
B. lim qn = 1 với |q| > 1.
A. lim k = 0 với k > 1.
n
1
C. lim un = c (Với un = c là hằng số).
D. lim √ = 0.
n
Câu 27. Tính lim
A. +∞.

0.

3
.
2

2
- .
3

Câu 31. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a 3
a
a
B.
.
C. a.

D. .
A. .
2
2
3
Câu 32. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
D.
.
B.
.
C. a 6.
.
6
2
3

Câu 33. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng




3a 38
3a
a 38
3a 58
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 34. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1
A. 2
.
B.
.
C.
.
D.
.




a + b2
a2 + b2
a2 + b2
2 a2 + b2
Câu 35. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
B.
D.
A. a 2.
.
C. 2a 2.
.
2
4
0 0 0 0
0
Câu 36.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6

a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
2
3
7
Câu 37. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và
√ (A C D) bằng



2a 3
a 3
a 3
A.
.
B. a 3.
C.
.
D.

.
2
2
3
Câu 38. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 6.
B. a 3.
C. 2a 6.
D.
.
2
Trang 3/5 Mã đề 1


[ = 60◦ , S O
Câu 39. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S√BC) bằng


a 57
2a 57
a 57
B.

A. a 57.
.
C.
.
D.
.
19
19
17
3a
Câu 40. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

2a
a
a 2
a
A.
.
B. .
C.
.
D. .
3
3
3
4

Câu 41.
đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z
k f (x)dx = f

A.
Z
C.

f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.

Câu 42. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) liên tục trên K.

B.
Z
D.

( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
f (x)g(x)dx =
f (x)dx g(x)dx.


B. f (x) xác định trên K.
D. f (x) có giá trị lớn nhất trên K.

Câu 43. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Chỉ có (I) đúng.

C. Cả hai đều sai.

D. Cả hai đều đúng.

Câu 44. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Cả ba đáp án trên.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 45. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.

B. 1.

C. 4.


D. 2.

Câu 46. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Chỉ có (I) đúng.

C. Cả hai câu trên sai.

D. Cả hai câu trên đúng.
Trang 4/5 Mã đề 1


Câu 47. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là

A. (II) và (III).

B. (I) và (III).

C. (I) và (II).

D. Cả ba mệnh đề.

Câu 48.
Z [1233d-2] Mệnh đề nào sau đây sai?

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
B.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.


A.

Câu 49. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
D.
dx = log |u(x)| + C.
u(x)
Câu 50.
Z Các khẳng định nào sau
Z đây là sai?

Z

f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. B.
f (x)dx = F(x) +C ⇒
!0
Z
Z
Z
f (x)dx = f (x).
C.
k f (x)dx = k
f (x)dx, k là hằng số.
D.

A.

Z

f (u)dx = F(u) +C.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2.

D

3.

D

4.

C

C


5.

B

6.

D

7.

B

8.

D

10.

D

12.

D

D

9.
11.

B

C

13.

14. A

15.

D

16. A

17.

D

18.

B
B

19.

C

20.

21.

C


22.

D
D

23.

B

24.

25.

B

26.

C
C

27.

D

28.

29.

D


30.

31.

C

32. A

33. A
35.

34.
B

B
C

36.

37.
39.

B

D

38. A
40. A


B

41.

D

42.

C

43. A

44.

D

45. A

46.

D

47.
49.

C
D

1


48.

B

50.

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×