Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 5 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
x+1
Câu 1. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. 1.
D. .
3
2
6
2x + 1
Câu 2. Tính giới hạn lim
x→+∞ x + 1
1
B. 2.
C. −1.
D. 1.
A. .
2
Câu 3. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim [ f (x)g(x)] = ab.
B. lim
= .
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) + g(x)] = a + b.
D. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞
2n + 1
Câu 4. Tính giới hạn lim
3n + 2
3
A. 0.
B. .
2
x+2
Câu 5. Tính lim
bằng?
x→2
x
A. 3.
B. 1.
2
x − 12x + 35
Câu 6. Tính lim
x→5
25 − 5x
A. −∞.
B. +∞.
C.
1
.
2
D.
C. 2.
D. 0.
2
C. − .
5
2
2
0
Câu 7. Cho f (x) = sin x − cos x − x. Khi đó f (x) bằng
A. 1 − sin 2x.
B. −1 + sin x cos x.
C. −1 + 2 sin 2x.
2−n
bằng
Câu 8. Giá trị của giới hạn lim
n+1
A. 0.
B. −1.
C. 2.
√
√
2
4n + 1 − n + 2
Câu 9. Tính lim
bằng
2n − 3
3
A. +∞.
B. .
C. 1.
2
√
x2 + 3x + 5
Câu 10. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .
B. 0.
C. − .
4
4
Câu 11. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.
2
.
3
D.
2
.
5
D. 1 + 2 sin 2x.
D. 1.
D. 2.
D. 1.
1
3|x−1|
= 3m − 2 có nghiệm duy
B. 4.
C. 2.
D. 3.
log(mx)
Câu 12. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0 ∨ m > 4.
C. m < 0.
D. m ≤ 0.
Câu 13. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 2.
B. Vô số.
C. 1.
D. 3.
Trang 1/5 Mã đề 1
Câu 14.
[12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3
có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [−1; 0].
B. m ∈ [0; 1].
C. m ∈ [0; 4].
q
x+ log23 x + 1+4m−1 = 0
D. m ∈ [0; 2].
Câu 15. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≥ .
C. m ≤ .
D. m < .
4
4
4
4
Câu 16. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 13.
C. 13.
D. log2 2020.
Câu 17. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 4).
C. (2; 4; 3).
D. (2; 4; 6).
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
Câu 18. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
Pmin của P = x√+ y.
√
√
√
18 11 − 29
2 11 − 3
9 11 − 19
9 11 + 19
A. Pmin =
. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
9
21
3
9
Câu 19. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. Vô nghiệm.
D. 3.
1
Câu 20. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 0 < m ≤ 1.
D. 2 < m ≤ 3.
!
1
1
1
+
+ ··· +
Câu 21. Tính lim
1.2 2.3
n(n + 1)
3
A. .
B. 2.
C. 1.
D. 0.
2
5
Câu 22. Tính lim
n+3
A. 3.
B. 2.
C. 0.
D. 1.
Câu 23. Phát biểu nào sau đây là sai?
1
B. lim √ = 0.
n
1
n
C. lim q = 1 với |q| > 1.
D. lim k = 0 với k > 1.
n
Câu 24. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
A. lim un = c (Với un = c là hằng số).
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.
B. 2.
C. 1.
7n2 − 2n3 + 1
Câu 25. Tính lim 3
3n + 2n2 + 1
2
7
A. - .
B. .
C. 1.
3
3
Câu 26. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
D. 0.
D. 0.
Trang 2/5 Mã đề 1
!
un
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= −∞.
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
12 + 22 + · · · + n2
n3
B. +∞.
Câu 27. [3-1133d] Tính lim
A. 0.
C.
2
.
3
D.
Câu 28. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. 1.
B. −∞.
C. 0.
1
.
3
un
bằng
vn
D. +∞.
2
2n − 1
Câu 29. Tính lim 6
3n + n4
2
A. .
B. 0.
3
Câu 30. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 + n + 1
A. un =
.
B.
u
=
.
n
n2
(n + 1)2
C. 2.
C. un =
D. 1.
n2 − 2
.
5n − 3n2
D. un =
1 − 2n
.
5n + n2
Câu 31. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
.
B.
.
C. a 6.
D.
.
A.
2
3
6
Câu 32. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
2 a2 + b2
a2 + b2
a2 + b2
Câu 33. [2] Cho hình chóp S .ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng
√
√
√
√
a 2
a 2
.
C.
.
D. a 2.
A. a 3.
B.
2
3
0 0 0 0
0
Câu 34.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
.
B.
.
C.
.
D.
.
A.
7
2
3
2
Câu 35. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a 3
a
A. .
B.
.
C. a.
D. .
3
2
2
Câu 36. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. a 3.
.
B. a 6.
C. 2a 6.
D.
2
Câu 37. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
5a
2a
8a
A. .
B.
.
C.
.
D.
.
9
9
9
9
Trang 3/5 Mã đề 1
Câu 38. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1
.
C. √
.
D. √
.
A. 2
.
B. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 39. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
√
a 2
a 2
A.
.
B. 2a 2.
C. a 2.
D.
.
2
4
d = 120◦ .
Câu 40. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
A. 4a.
B. 3a.
C. 2a.
D.
2
Câu 41. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.
B. 2.
C. 1.
D. 4.
Câu 42. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 43. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.
B. Câu (I) sai.
C. Khơng có câu nào D. Câu (III) sai.
sai.
Câu 44.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)
A.
dx = log |u(x)| + C.
u(x)
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 45.
f (x), g(x) liên
đề nào sai? Z
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
D.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Trang 4/5 Mã đề 1
Câu 46. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. F(x) = G(x) trên khoảng (a; b).
Câu 47. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).
B. (II) và (III).
C. Cả ba mệnh đề.
D. (I) và (II).
Câu 48.
!0 nào sau đây sai?
Z Mệnh đề
A.
f (x)dx = f (x).
B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Câu 49.
Z Các khẳng định nào sau
Z đây là sai?
f (x)dx = F(x) + C ⇒
A.
Z
C.
f (x)dx = F(x) +C ⇒
f (t)dt = F(t) + C. B.
Z
f (u)dx = F(u) +C. D.
Z
Z
f (x)dx = F(x) + C.
!0
f (x)dx = f (x).
Z
k f (x)dx = k
f (x)dx, k là hằng số.
Câu 50. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Cả ba đáp án trên.
√
C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
3.
D
2.
B
4.
D
D
5.
C
6.
7.
C
8.
9.
C
10.
11. A
12. A
13. A
14. A
15.
D
17.
19.
16.
C
22.
23.
C
24.
25. A
B
C
D
C
B
26. A
27.
D
28.
C
30.
B
31.
35.
C
20.
B
C
33.
B
18.
21.
29.
B
D
32.
B
D
B
34.
C
36.
D
C
B
38.
D
39. A
40.
D
41. A
42.
37.
43.
44. A
C
45. A
47.
49.
C
D
46.
B
48.
B
50.
C
1
C