Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 5 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. Tính lim
x→5
x2 − 12x + 35
25 − 5x
2
B. − .
5
A. −∞.
1 − n2
Câu 2. [1] Tính lim 2
bằng?
2n + 1
1
1
A. .
B. .
3
2
2n + 1
Câu 3. Tìm giới hạn lim
n+1
A. 0.
B. 1.
2
.
5
D. +∞.
C. 0.
1
D. − .
2
C. 3.
D. 2.
C.
Câu 4. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
C. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
D. lim+ f (x) = f (a) và lim+ f (x) = f (b).
Câu 5. Phát biểu nào sau đây là sai?
A. lim un = c (un = c là hằng số).
1
C. lim k = 0.
n
x2 − 5x + 6
x→2
x−2
A. 0.
B. −1.
2n + 1
Câu 7. Tính giới hạn lim
3n + 2
3
B. 0.
A. .
2
√
x2 + 3x + 5
Câu 8. Tính giới hạn lim
x→−∞
4x − 1
1
A. 0.
B. .
4
x−3
Câu 9. [1] Tính lim
bằng?
x→3 x + 3
A. 1.
B. −∞.
1 − 2n
Câu 10. [1] Tính lim
bằng?
3n + 1
1
A. 1.
B. .
3
1
= 0.
n
D. lim qn = 0 (|q| > 1).
B. lim
Câu 6. Tính giới hạn lim
C. 5.
C.
2
.
3
B. 0 ≤ m ≤ 1.
D.
1
.
2
1
C. − .
4
D. 1.
C. +∞.
D. 0.
C.
2
.
3
2
D. − .
3
1
= m − 2 có nghiệm
3|x−2|
C. 2 < m ≤ 3.
D. 2 ≤ m ≤ 3.
Câu 11. [12214d] Với giá trị nào của m thì phương trình
A. 0 < m ≤ 1.
D. 1.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = −ey − 1.
C. xy0 = ey − 1.
D. xy0 = −ey + 1.
Câu 12. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.
Trang 1/5 Mã đề 1
Câu 13. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m ≤ 3.
C. m < 3.
D. m > 3.
√
Câu 14. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 64.
C. 62.
D. 63.
Câu 15. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 2.
C. Vô nghiệm.
D. 3.
q
Câu 16. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [−1; 0].
C. m ∈ [0; 4].
D. m ∈ [0; 1].
log(mx)
Câu 17. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m ≤ 0.
C. m < 0 ∨ m = 4.
D. m < 0.
Câu 18. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. Vô số.
C. 2.
D. 1.
Câu 19. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 2.
C. 3.
D. 1.
√
√
− 3m + 4 = 0 có nghiệm
3
3
C. 0 < m ≤ .
D. 0 ≤ m ≤ .
4
4
un
Câu 21. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. 0.
C. +∞.
D. 1.
Câu 20. [12215d] Tìm m để phương trình 4 x+
9
A. m ≥ 0.
B. 0 ≤ m ≤ .
4
1−x2
− 4.2 x+
1−x2
Câu 22. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 − 3n
A. un =
.
B.
u
=
.
n
5n − 3n2
n2
C. un =
Câu 24. Dãy số nào sau đây có giới hạn khác 0?
1
n+1
A. √ .
B.
.
n
n
C.
n2 + n + 1
.
(n + 1)2
1 − 2n
D. un =
.
5n + n2
!
3n + 2
2
Câu 23. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 5.
C. 3.
D. 2.
sin n
.
n
12 + 22 + · · · + n2
Câu 25. [3-1133d] Tính lim
n3
2
A. .
B. +∞.
C. 0.
3
2n2 − 1
Câu 26. Tính lim 6
3n + n4
2
A. 2.
B. .
C. 0.
3
Câu 27. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
D.
1
.
n
D.
1
.
3
D. 1.
(I) lim nk = +∞ với k nguyên dương.
Trang 2/5 Mã đề 1
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.
B. 3.
Câu 28. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.
n
C. lim un = c (Với un = c là hằng số).
7n2 − 2n3 + 1
Câu 29. Tính lim 3
3n + 2n2 + 1
2
A. - .
B. 0.
3
n−1
Câu 30. Tính lim 2
n +2
A. 1.
B. 3.
C. 0.
D. 2.
B. lim qn = 1 với |q| > 1.
1
D. lim √ = 0.
n
7
.
3
D. 1.
C. 0.
D. 2.
C.
Câu 31. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
.
D. a 6.
B. a 3.
C.
A. 2a 6.
2
0 0 0 0
0
Câu 32.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 3
a 6
a 6
a 6
.
B.
.
C.
.
D.
.
A.
2
2
7
3
Câu 33. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
ab
1
A. 2
.
B. √
.
C. √
.
D. √
.
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 34. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng
√
√
√
√
a 2
a 2
B.
.
C. a 2.
D.
.
A. a 3.
3
2
d = 30◦ , biết S BC là tam giác đều
Câu 35. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
16
9
13
26
Câu 36. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
√
√
a 2
a 2
A. 2a 2.
B. a 2.
C.
.
D.
.
4
2
Câu 37. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
8a
2a
5a
A. .
B.
.
C.
.
D.
.
9
9
9
9
Câu 38. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a 3
a
a
A.
.
B. .
C. .
D. a.
2
2
3
Trang 3/5 Mã đề 1
d = 120◦ .
Câu 39. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
D. 4a.
A. 3a.
B. 2a.
C.
2
Câu 40. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng
√
√
√
a b2 + c2
abc b2 + c2
b a2 + c2
c a2 + b2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 41. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.
B. 3.
C. 1.
D. 2.
Câu 42. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Cả hai đều sai.
C. Chỉ có (I) đúng.
D. Chỉ có (II) đúng.
Câu 43. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.
B. Chỉ có (II) đúng.
C. Chỉ có (I) đúng.
D. Cả hai câu trên đúng.
Câu 44. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
C.
f (x)dx = f (x).
Z
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
Câu 45. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Trang 4/5 Mã đề 1
Các mệnh đề đúng là
A. Cả ba mệnh đề.
B. (I) và (III).
Câu 46. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) liên tục trên K.
C. (I) và (II).
B. f (x) xác định trên K.
D. f (x) có giá trị nhỏ nhất trên K.
Câu 47.
Z Các khẳng định nào sau
Z đây là sai?
A.
Z
C.
f (x)dx = F(x) +C ⇒
!0
f (x)dx = f (x).
D. (II) và (III).
f (u)dx = F(u) +C. B.
Z
Z
D.
Z
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
Z
k f (x)dx = k
f (x)dx, k là hằng số.
Câu 48. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.
B. Không có câu nào C. Câu (III) sai.
D. Câu (I) sai.
sai.
Câu 49. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. F(x) = G(x) trên khoảng (a; b).
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
Câu 50.
Z Trong các khẳng định sau, khẳng định nào sai? Z
dx = x + C, C là hằng số.
A.
Z
C.
B.
1
dx = ln |x| + C, C là hằng số.
x
Z
D.
xα dx =
xα+1
+ C, C là hằng số.
α+1
0dx = C, C là hằng số.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
2.
C
3.
D
4.
5.
D
6.
7.
C
C
B
8.
D
9.
D
C
D
10.
C
12.
C
13. A
14.
C
15. A
16.
11.
17.
B
18.
C
C
19.
B
20.
D
21.
B
22.
D
23. A
24.
25.
D
26.
27.
D
28.
29. A
B
C
B
30.
31.
D
C
32.
D
33.
C
34.
D
35.
C
36.
D
38.
D
37.
B
39.
41.
42.
B
43.
45.
40. A
C
D
44.
B
46.
C
47. A
49.
D
D
1
C
48.
B
50.
B